@misc{PratHajnýGrunewaldetal.2018, author = {Pr{\´a}t, Tom{\´a}š and Hajny', Jakub and Grunewald, Wim and Vasileva, Mina and Moln{\´a}r, Gergely and Tejos, Ricardo and Schmid, Markus and Sauer, Michael and Friml, Jiř{\´i}}, title = {WRKY23 is a component of the transcriptional network mediating auxin feedback on PIN polarity}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1123}, issn = {1866-8372}, doi = {10.25932/publishup-44633}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-446331}, pages = {20}, year = {2018}, abstract = {Auxin is unique among plant hormones due to its directional transport that is mediated by the polarly distributed PIN auxin transporters at the plasma membrane. The canalization hypothesis proposes that the auxin feedback on its polar flow is a crucial, plant-specific mechanism mediating multiple self-organizing developmental processes. Here, we used the auxin effect on the PIN polar localization in Arabidopsis thaliana roots as a proxy for the auxin feedback on the PIN polarity during canalization. We performed microarray experiments to find regulators of this process that act downstream of auxin. We identified genes that were transcriptionally regulated by auxin in an AXR3/IAA17-and ARF7/ARF19-dependent manner. Besides the known components of the PIN polarity, such as PID and PIP5K kinases, a number of potential new regulators were detected, among which the WRKY23 transcription factor, which was characterized in more detail. Gain-and loss-of-function mutants confirmed a role for WRKY23 in mediating the auxin effect on the PIN polarity. Accordingly, processes requiring auxin-mediated PIN polarity rearrangements, such as vascular tissue development during leaf venation, showed a higher WRKY23 expression and required the WRKY23 activity. Our results provide initial insights into the auxin transcriptional network acting upstream of PIN polarization and, potentially, canalization-mediated plant development.}, language = {en} } @misc{FranckeFoersterBrosinskyetal.2018, author = {Francke, Till and F{\"o}rster, Saskia and Brosinsky, Arlena and Sommerer, Erik and Lopez-Tarazon, Jose Andres and G{\"u}ntner, Andreas and Batalla Villanueva, Ramon J. and Bronstert, Axel}, title = {Water and sediment fluxes in Mediterranean mountainous regions}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {547}, issn = {1866-8372}, doi = {10.25932/publishup-41915}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-419150}, pages = {13}, year = {2018}, abstract = {A comprehensive hydro-sedimentological dataset for the Is{\´a}bena catchment, northeastern (NE) Spain, for the period 2010-2018 is presented to analyse water and sediment fluxes in a Mediterranean mesoscale catchment. The dataset includes rainfall data from 12 rain gauges distributed within the study area complemented by meteorological data of 12 official meteo-stations. It comprises discharge data derived from water stage measurements as well as suspended sediment concentrations (SSCs) at six gauging stations of the River Is{\´a}bena and its sub-catchments. Soil spectroscopic data from 351 suspended sediment samples and 152 soil samples were collected to characterize sediment source regions and sediment properties via fingerprinting analyses. The Is{\´a}bena catchment (445 km 2 ) is located in the southern central Pyrenees ranging from 450 m to 2720 m a.s.l.; together with a pronounced topography, this leads to distinct temperature and precipitation gradients. The River Is{\´a}bena shows marked discharge variations and high sediment yields causing severe siltation problems in the downstream Barasona Reservoir. The main sediment source is badland areas located on Eocene marls that are well connected to the river network. The dataset features a comprehensive set of variables in a high spatial and temporal resolution suitable for the advanced process understanding of water and sediment fluxes, their origin and connectivity and sediment budgeting and for the evaluation and further development of hydro-sedimentological models in Mediterranean mesoscale mountainous catchments.}, language = {en} }