@article{MantiloniDavisGaeteRojasetal.2021, author = {Mantiloni, Lorenzo and Davis, Timothy and Gaete Rojas, Ayleen Barbara and Rivalta, Eleonora}, title = {Stress inversion in a gelatin box}, series = {Geophysical research letters : GRL / American Geophysical Union}, volume = {48}, journal = {Geophysical research letters : GRL / American Geophysical Union}, number = {6}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0094-8276}, doi = {10.1029/2020GL090407}, pages = {11}, year = {2021}, abstract = {Assessing volcanic hazard in regions of distributed volcanism is challenging because of the uncertain location of future vents. A statistical-mechanical strategy to forecast such locations was recently proposed: here, we further develop and test it with analog models. We stress a gelatin block laterally and with surface excavations, and observe air-filled crack trajectories. We use the observed surface arrivals to sample the distributions of parameters describing the stress state of the gelatin block, combining deterministic crack trajectory simulations with a Monte Carlo approach. While the individual stress parameters remain unconstrained, we effectively retrieve their ratio and successfully forecast the arrival points of subsequent cracks.}, language = {en} } @phdthesis{Ruch2010, author = {Ruch, Jo{\"e}l}, title = {Volcano deformation analysis in the Lazufre area (central Andes) using geodetic and geological observations}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-47361}, school = {Universit{\"a}t Potsdam}, year = {2010}, abstract = {Large-scale volcanic deformation recently detected by radar interferometry (InSAR) provides new information and thus new scientific challenges for understanding volcano-tectonic activity and magmatic systems. The destabilization of such a system at depth noticeably affects the surrounding environment through magma injection, ground displacement and volcanic eruptions. To determine the spatiotemporal evolution of the Lazufre volcanic area located in the central Andes, we combined short-term ground displacement acquired by InSAR with long-term geological observations. Ground displacement was first detected using InSAR in 1997. By 2008, this displacement affected 1800 km2 of the surface, an area comparable in size to the deformation observed at caldera systems. The original displacement was followed in 2000 by a second, small-scale, neighbouring deformation located on the Lastarria volcano. We performed a detailed analysis of the volcanic structures at Lazufre and found relationships with the volcano deformations observed with InSAR. We infer that these observations are both likely to be the surface expression of a long-lived magmatic system evolving at depth. It is not yet clear whether Lazufre may trigger larger unrest or volcanic eruptions; however, the second deformation detected at Lastarria and the clear increase of the large-scale deformation rate make this an area of particular interest for closer continuous monitoring.}, language = {en} } @phdthesis{Hahne2004, author = {Hahne, Kai}, title = {Detektion eines mesozoischen Gangschwarmes in NW Namibia und Rekonstruktion regionaler Spannungszust{\"a}nde w{\"a}hrend der S{\"u}datlantik{\"o}ffnung}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0001687}, school = {Universit{\"a}t Potsdam}, year = {2004}, abstract = {Gangschw{\"a}rme nehmen eine bedeutende Stellung im Verst{\"a}ndnis zur kontinentalen Fragmentierung ein. Einerseits markieren sie das Pal{\"a}o-Spannungsfeld und helfen bei der Rekonstruktion der strukturellen Entwicklung der gedehnten Lithosph{\"a}re, andererseits gibt ihre petrologische Beschaffenheit Aufschluß {\"u}ber die Entstehung des Magmas, Aufstieg und Platznahme und schließlich erlaubt ihre Altersbestimmung die Rekonstruktion einer chronologischen Reihenfolge magmatischer und struktureller Ereignisse. Das Arbeitsgebiet im namibianischen Henties Bay-Outjo Dike swarm (HOD) war zur Zeit der Unterkreide einem Rifting mit intensiver Platznahme von {\"u}berwiegend mafischen G{\"a}ngen unterworfen. Geochemische Signaturen weisen die G{\"a}nge als erodierte F{\"o}rderkan{\"a}le der Etendeka Plateaubasalte aus. Durch den Einsatz von hochaufl{\"o}senden Aeromagnetik- und Satellitendaten war es m{\"o}glich, die Geometrie des Gangschwarmes erstmals detailliert synoptisch zu erfassen. Viele zu den Schichten des Grundgebirges foliationsparallel verlaufende magnetische Anomalien k{\"o}nnen unaufgeschlossenen kretazischen Intrusionen zugeordnet werden. Bei der nach Norden propagierenden S{\"u}datlantik{\"o}ffnung spielte die unterschiedliche strukturelle Vorzeichnung durch die neoproterozoischen Falteng{\"u}rtel sowie Lithologie und Spannungsfeld des Angola Kratons eine bedeutende Rolle. Im k{\"u}stennahen zentralen Bereich war dank der Vorzeichnung des Nordost streichenden Damara-Falteng{\"u}rtels ein Rifting in Nordwest-S{\"u}dost-Richtung dominierend, bis das Angola Kraton ein weiteres Fortscheiten nach Nordosten hemmte und die Vorzeichnung des Nordwest streichenden Kaoko-Falteng{\"u}rtels an der Westgrenze den weiteren Riftverlauf und die letztendlich erfolgreiche {\"O}ffnung des S{\"u}datlantiks bestimmte. Aus diesem Grund kann das Gebiet des HOD als ein failed rift betrachtet werden. Die Entwicklung des Spannungsfeldes im HOD kann folgendermaßen skizziert werden: 1. Platznahme von G{\"a}ngen bei gleichzeitig hoher Dehnungsrate und hohem Magmenfluß. 2. Platznahme von Zentralvulkanen entlang reaktivierter pal{\"a}ozoischer Lineamente bei Abnahme der Dehnungsrate und fortbestehendem hohen Magmenfluß. 3. Abnahme/Versiegen des Magmenflusses und neotektonische Bewegungen f{\"u}hren zur Bildung von Halbgr{\"a}ben.}, language = {de} }