@phdthesis{Stiegler2023, author = {Stiegler, Jonas}, title = {Mobile link functions in unpredictable agricultural landscapes}, doi = {10.25932/publishup-62202}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-622023}, school = {Universit{\"a}t Potsdam}, pages = {155}, year = {2023}, abstract = {Animal movement is a crucial aspect of life, influencing ecological and evolutionary processes. It plays an important role in shaping biodiversity patterns, connecting habitats and ecosystems. Anthropogenic landscape changes, such as in agricultural environments, can impede the movement of animals by affecting their ability to locate resources during recurring movements within home ranges and, on a larger scale, disrupt migration or dispersal. Inevitably, these changes in movement behavior have far-reaching consequences on the mobile link functions provided by species inhabiting such extensively altered matrix areas. In this thesis, I investigate the movement characteristics and activity patterns of the European hare (Lepus europaeus), aiming to understand their significance as a pivotal species in fragmented agricultural landscapes. I reveal intriguing results that shed light on the importance of hares for seed dispersal, the influence of personality traits on behavior and space use, the sensitivity of hares to extreme weather conditions, and the impacts of GPS collaring on mammals' activity patterns and movement behavior. In Chapter I, I conducted a controlled feeding experiment to investigate the potential impact of hares on seed dispersal. By additionally utilizing GPS data of hares in two contrasting landscapes, I demonstrated that hares play a vital role, acting as effective mobile linkers for many plant species in small and isolated habitat patches. The analysis of seed intake and germination success revealed that distinct seed traits, such as density, surface area, and shape, profoundly affect hares' ability to disperse seeds through endozoochory. These findings highlight the interplay between hares and plant communities and thus provide valuable insights into seed dispersal mechanisms in fragmented landscapes. By employing standardized behavioral tests in Chapter II, I revealed consistent behavioral responses among captive hares while simultaneously examining the intricate connection between personality traits and spatial patterns within wild hare populations. This analysis provides insights into the ecological interactions and dynamics within hare populations in agricultural habitats. Examining the concept of animal personality, I established a link between personality traits and hare behavior. I showed that boldness, measured through standardized tests, influences individual exploration styles, with shy and bold hares exhibiting distinct space use patterns. In addition to providing valuable insights into the role of animal personality in heterogeneous environments, my research introduced a novel approach demonstrating the feasibility of remotely assessing personality types using animal-borne sensors without additional disturbance of the focal individual. While climate conditions severely impact the activity and, consequently, the fitness of wildlife species across the globe, in Chapter III, I uncovered the sensitivity of hares to temperature, humidity, and wind speed during their peak reproduction period. I found a strong response in activity to high temperatures above 25°C, with a particularly pronounced effect during temperature extremes of over 35°C. The non-linear relationship between temperature and activity was characterized by contrasting responses observed for day and night. These findings emphasize the vulnerability of hares to climate change and the potential consequences for their fitness and population dynamics with the ongoing rise of temperature. Since such insights can only be obtained through capturing and tagging free-ranging animals, I assessed potential impacts and the recovery process post-collar attachment in Chapter IV. For this purpose, I examined the daily distances moved and the temporal-associated activity of 1451 terrestrial mammals out of 42 species during their initial tracking period. The disturbance intensity and the speed of recovery varied across species, with herbivores, females, and individuals captured and collared in relatively secluded study areas experiencing more pronounced disturbances due to limited anthropogenic influences. Mobile linkers are essential for maintaining biodiversity as they influence the dynamics and resilience of ecosystems. Furthermore, their ability to move through fragmented landscapes makes them a key component for restoring disturbed sites. Individual movement decisions determine the scale of mobile links, and understanding variations in space use among individuals is crucial for interpreting their functions. Climate change poses further challenges, with wildlife species expected to adjust their behavior, especially in response to high-temperature extremes, and comprehending the anthropogenic influence on animal movements will remain paramount to effective land use planning and the development of successful conservation strategies. This thesis provides a comprehensive ecological understanding of hares in agricultural landscapes. My research findings underscore the importance of hares as mobile linkers, the influence of personality traits on behavior and spatial patterns, the vulnerability of hares to extreme weather conditions, and the immediate consequences of collar attachment on mammalian movements. Thus, I contribute valuable insights to wildlife conservation and management efforts, aiding in developing strategies to mitigate the impact of environmental changes on hare populations. Moreover, these findings enable the development of methodologies aimed at minimizing the impacts of collaring while also identifying potential biases in the data, thereby benefiting both animal welfare and the scientific integrity of localization studies.}, language = {en} } @misc{SchnitzlerPinzoneAutenriethetal.2018, author = {Schnitzler, Joseph G. and Pinzone, Marianna and Autenrieth, Marijke and van Neer, Abbo and IJsseldijk, Lonneke L. and Barber, Jonathan L. and Deaville, Rob and Jepson, Paul and Brownlow, Andrew and Schaffeld, Tobias and Thom{\´e}, Jean-Pierre and Tiedemann, Ralph and Das, Krishna and Siebert, Ursula}, title = {Inter-individual differences in contamination profiles as tracer of social group association in stranded sperm whales}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {692}, issn = {1866-8372}, doi = {10.25932/publishup-42652}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-426525}, pages = {11}, year = {2018}, abstract = {Ecological and physiological factors lead to different contamination patterns in individual marine mammals. The objective of the present study was to assess whether variations in contamination profiles are indicative of social structures of young male sperm whales as they might reflect a variation in feeding preferences and/or in utilized feeding grounds. We used a total of 61 variables associated with organic compounds and trace element concentrations measured in muscle, liver, kidney and blubber gained from 24 sperm whales that stranded in the North Sea in January and February 2016. Combining contaminant and genetic data, there is evidence for at least two cohorts with different origin among these stranded sperm whales; one from the Canary Island region and one from the northern part of the Atlantic. While genetic data unravel relatedness and kinship, contamination data integrate over areas, where animals occured during their lifetime. Especially in long-lived animals with a large migratory potential, as sperm whales, contamination data may carry highly relevant information about aggregation through time and space.}, language = {en} } @phdthesis{Bibi2018, author = {Bibi, Faysal}, title = {Paleoecology and evolution in the Afro-Arabian neogene}, school = {Universit{\"a}t Potsdam}, year = {2018}, abstract = {This cumulative habilitation thesis presents new work on the systematics, paleoecology, and evolution of antelopes and other large mammals, focusing mainly on the late Miocene to Pleistocene terrestrial fossil record of Africa and Arabia. The studies included here range from descriptions of new species to broad-scale analyses of diversification and community evolution in large mammals over millions of years. A uniting theme is the evolution, across both temporal and spatial scales, of the environments and faunas that characterize modern African savannas today. One conclusion of this work is that macroevolutionary changes in large mammals are best characterized at regional (subcontinental to continental) and long-term temporal scales. General views of evolution developed on records that are too restricted in spatial and temporal extent are likely to ascribe too much influence to local or short-lived events. While this distinction in the scale of analysis and interpretation may seem trivial, it is challenging to implement given the geographically and temporally uneven nature of the fossil record, and the difficulties of synthesizing spatially and temporally dispersed datasets. This work attempts to do just that, bringing together primary fossil discoveries from eastern Africa to Arabia, from the Miocene to the Pleistocene, and across a wide range of (mainly large mammal) taxa. The end result is support for hypotheses stressing the impact of both climatic and biotic factors on long-term faunal change, and a more geographically integrated view of evolution in the African fossil record.}, language = {en} } @article{AutenriethHartmannLahetal.2018, author = {Autenrieth, Marijke and Hartmann, Stefanie and Lah, Ljerka and Roos, Anna and Dennis, Alice B. and Tiedemann, Ralph}, title = {High-quality whole-genome sequence of an abundant Holarctic odontocete, the harbour porpoise (Phocoena phocoena)}, series = {Molecular ecology resources}, volume = {18}, journal = {Molecular ecology resources}, number = {6}, publisher = {Wiley}, address = {Hoboken}, issn = {1755-098X}, doi = {10.1111/1755-0998.12932}, pages = {1469 -- 1481}, year = {2018}, abstract = {The harbour porpoise (Phocoena phocoena) is a highly mobile cetacean found across the Northern hemisphere. It occurs in coastal waters and inhabits basins that vary broadly in salinity, temperature and food availability. These diverse habitats could drive subtle differentiation among populations, but examination of this would be best conducted with a robust reference genome. Here, we report the first harbour porpoise genome, assembled de novo from an individual originating in the Kattegat Sea (Sweden). The genome is one of the most complete cetacean genomes currently available, with a total size of 2.39 Gb and 50\% of the total length found in just 34 scaffolds. Using 122 of the longest scaffolds, we were able to show high levels of synteny with the genome of the domestic cattle (Bos taurus). Our draft annotation comprises 22,154 predicted genes, which we further annotated through matches to the NCBI nucleotide database, GO categorization and motif prediction. Within the predicted genes, we have confirmed the presence of >20 genes or gene families that have been associated with adaptive evolution in other cetaceans. Overall, this genome assembly and draft annotation represent a crucial addition to the genomic resources currently available for the study of porpoises and Phocoenidae evolution, phylogeny and conservation.}, language = {en} }