@article{SeilerSeissHoffmannetal.2019, author = {Seiler, Michael and Seiß, Martin and Hoffmann, Holger and Spahn, Frank}, title = {Hydrodynamic Simulations of Asymmetric Propeller Structures in Saturn's Rings}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Supplement series}, volume = {243}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Supplement series}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0067-0049}, doi = {10.3847/1538-4365/ab26b0}, pages = {16}, year = {2019}, abstract = {The observation of the non-Keplerian behavior of propeller structures in Saturn's outer A ring raises the question: how does the propeller respond to the wandering of the central embedded moonlet? Here, we study numerically how the structural imprint of the propeller changes for a libration of the moonlet. It turns out that the libration induces an asymmetry in the propeller, which depends on the libration period and amplitude of the moonlet. Further, we study the dependence of the asymmetry on the libration period and amplitude for a moonlet with a 400 m Hill radius, which is located in the outer A ring. This allows us to apply our findings to the largest known propeller Bl{\´e}riot, which is expected to be of a similar size. For Bl{\´e}riot, we can conclude that, supposing the moonlet is librating with the largest observed period of 11.1 yr and an azimuthal amplitude of about 1845 km, a small asymmetry should be measurable but depends on the moonlet's libration phase at the observation time. The longitude residuals of other trans-Encke propellers (e.g., Earhart) show amplitudes similar to Bl{\´e}riot, which might allow us to observe larger asymmetries due to their smaller azimuthal extent, allowing us to scan the whole gap structure for asymmetries in one observation. Although the librational model of the moonlet is a simplification, our results are a first step toward the development of a consistent model for the description of the formation of asymmetric propellers caused by a freely moving moonlet.}, language = {en} } @article{JanssenArhonditsisBeusenetal.2015, author = {Janssen, Annette B. G. and Arhonditsis, George B. and Beusen, Arthur and Bolding, Karsten and Bruce, Louise and Bruggeman, Jorn and Couture, Raoul-Marie and Downing, Andrea S. and Elliott, J. Alex and Frassl, Marieke A. and Gal, Gideon and Gerla, Daan J. and Hipsey, Matthew R. and Hu, Fenjuan and Ives, Stephen C. and Janse, Jan H. and Jeppesen, Erik and Joehnk, Klaus D. and Kneis, David and Kong, Xiangzhen and Kuiper, Jan J. and Lehmann, Moritz K. and Lemmen, Carsten and Oezkundakci, Deniz and Petzoldt, Thomas and Rinke, Karsten and Robson, Barbara J. and Sachse, Rene and Schep, Sebastiaan A. and Schmid, Martin and Scholten, Huub and Teurlincx, Sven and Trolle, Dennis and Troost, Tineke A. and Van Dam, Anne A. and Van Gerven, Luuk P. A. and Weijerman, Mariska and Wells, Scott A. and Mooij, Wolf M.}, title = {Exploring, exploiting and evolving diversity of aquatic ecosystem models: a community perspective}, series = {Aquatic ecology : the international forum covering research in freshwater and marine environments}, volume = {49}, journal = {Aquatic ecology : the international forum covering research in freshwater and marine environments}, number = {4}, publisher = {Springer}, address = {Dordrecht}, issn = {1386-2588}, doi = {10.1007/s10452-015-9544-1}, pages = {513 -- 548}, year = {2015}, abstract = {Here, we present a community perspective on how to explore, exploit and evolve the diversity in aquatic ecosystem models. These models play an important role in understanding the functioning of aquatic ecosystems, filling in observation gaps and developing effective strategies for water quality management. In this spirit, numerous models have been developed since the 1970s. We set off to explore model diversity by making an inventory among 42 aquatic ecosystem modellers, by categorizing the resulting set of models and by analysing them for diversity. We then focus on how to exploit model diversity by comparing and combining different aspects of existing models. Finally, we discuss how model diversity came about in the past and could evolve in the future. Throughout our study, we use analogies from biodiversity research to analyse and interpret model diversity. We recommend to make models publicly available through open-source policies, to standardize documentation and technical implementation of models, and to compare models through ensemble modelling and interdisciplinary approaches. We end with our perspective on how the field of aquatic ecosystem modelling might develop in the next 5-10 years. To strive for clarity and to improve readability for non-modellers, we include a glossary.}, language = {en} } @article{TelezhinskyDwarkadasPohl2012, author = {Telezhinsky, Igor O. and Dwarkadas, Vikram V. and Pohl, Martin}, title = {Particle spectra from acceleration at forward and reverse shocks of young Type Ia Supernova Remnants}, series = {Astroparticle physics}, volume = {35}, journal = {Astroparticle physics}, number = {6}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0927-6505}, doi = {10.1016/j.astropartphys.2011.10.001}, pages = {300 -- 311}, year = {2012}, abstract = {We study cosmic-ray acceleration in young Type Ia Supernova Remnants (SNRs) by means of test-particle diffusive shock acceleration theory and 1-D hydrodynamical simulations of their evolution. In addition to acceleration at the forward shock, we explore the particle acceleration at the reverse shock in the presence of a possible substantial magnetic field, and consequently the impact of this acceleration on the particle spectra in the remnant. We investigate the time evolution of the spectra for various time-dependent profiles of the magnetic field in the shocked region of the remnant. We test a possible influence on particle spectra of the Alfvenic drift of scattering centers in the precursor regions of the shocks. In addition, we study the radiation spectra and morphology in a broad band from radio to gamma-rays. It is demonstrated that the reverse shock contribution to the cosmic-ray particle population of young Type la SNRs may be significant, modifying the spatial distribution of particles and noticeably affecting the volume-integrated particle spectra in young SNRs. In particular spectral structures may arise in test-particle calculations that are often discussed as signatures of non-linear cosmic-ray modification of shocks. Therefore, the spectrum and morphology of emission, and their time evolution, differ from pure forward-shock solutions.}, language = {en} }