@article{HoffmannOttRaupbachetal.2022, author = {Hoffmann, Holger and Ott, Christiane and Raupbach, Jana and Andernach, Lars and Renz, Matthias and Grune, Tilman and Hanschen, Franziska S.}, title = {Assessing bioavailability and bioactivity of 4-Hydroxythiazolidine-2-Thiones, newly discovered glucosinolate degradation products formed during domestic boiling of cabbage}, series = {Frontiers in nutrition}, volume = {9}, journal = {Frontiers in nutrition}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-861X}, doi = {10.3389/fnut.2022.941286}, pages = {13}, year = {2022}, abstract = {Glucosinolates are plant secondary metabolites found in cruciferous vegetables (Brassicaceae) that are valued for their potential health benefits. Frequently consumed representatives of these vegetables, for example, are white or red cabbage, which are typically boiled before consumption. Recently, 3-alk(en)yl-4-hydroxythiazolidine-2-thiones were identified as a class of thermal glucosinolate degradation products that are formed during the boiling of cabbage. Since these newly discovered compounds are frequently consumed, this raises questions about their potential uptake and their possible bioactive functions. Therefore, 3-allyl-4-hydroxythiazolidine-2-thione (allyl HTT) and 4-hydroxy-3-(4-(methylsulfinyl) butyl)thiazolidine-2-thione (4-MSOB HTT) as degradation products of the respective glucosinolates sinigrin and glucoraphanin were investigated. After consumption of boiled red cabbage broth, recoveries of consumed amounts of the degradation products in urine collected for 24 h were 18 +/- 5\% for allyl HTT and 21 +/- 4\% for 4-MSOB HTT (mean +/- SD, n = 3). To investigate the stability of the degradation products during uptake and to elucidate the uptake mechanism, both an in vitro stomach and an in vitro intestinal model were applied. The results indicate that the uptake of allyl HTT and 4-MSOB HTT occurs by passive diffusion. Both compounds show no acute cell toxicity, no antioxidant potential, and no change in NAD(P)H dehydrogenase quinone 1 (NQO1) activity up to 100 mu M. However, inhibition of glycogen synthase kinases-3 (GSK-3) in the range of 20\% for allyl HTT for the isoform GSK-3 beta and 29\% for 4-MSOB HTT for the isoform GSK-3 alpha at a concentration of 100 mu M was found. Neither health-promoting nor toxic effects of 3-alk(en)yl-4-hydroxythiazolidine-2-thiones were found in the four tested assays carried out in this study, which contrasts with the properties of other glucosinolate degradation products, such as isothiocyanates.}, language = {en} } @article{ChepkiruiOchiengSarkaretal.2020, author = {Chepkirui, Carolyne and Ochieng, Purity J. and Sarkar, Biswajyoti and Hussain, Aabid and Pal, Chiranjib and Yang, Li Jun and Coghi, Paolo and Akala, Hoseah M. and Derese, Solomon and Ndakala, Albert and Heydenreich, Matthias and Wong, Vincent K. W. and Erdelyi, Mate and Yenesew, Abiy}, title = {Antiplasmodial and antileishmanial flavonoids from Mundulea sericea}, series = {Fitoterapia}, volume = {149}, journal = {Fitoterapia}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0367-326X}, doi = {10.1016/j.fitote.2020.104796}, pages = {6}, year = {2020}, abstract = {Five known compounds (1-5) were isolated from the extract of Mundulea sericea leaves. Similar investigation of the roots of this plant afforded an additional three known compounds (6-8). The structures were elucidated using NMR spectroscopic and mass spectrometric analyses. The absolute configuration of 1 was established using ECD spectroscopy. In an antiplasmodial activity assay, compound 1 showed good activity with an IC50 of 2.0 mu M against chloroquine-resistant W2, and 6.6 mu M against the chloroquine-sensitive 3D7 strains of Plasmodium falciparum. Some of the compounds were also tested for antileishmanial activity. Dehydrolupinifolinol (2) and sericetin (5) were active against drug-sensitive Leishmania donovani (MHOM/IN/83/AG83) with IC50 values of 9.0 and 5.0 mu M, respectively. In a cytotoxicity assay, lupinifolin (3) showed significant activity on BEAS-2B (IC50 4.9 mu M) and HePG2 (IC50 10.8 mu M) human cell lines. All the other compounds showed low cytotoxicity (IC50 > 30 mu M) against human lung adenocarcinoma cells (A549), human liver cancer cells (HepG2), lung/bronchus cells (epithelial virus transformed) (BEAS-2B) and immortal human hepatocytes (LO2)}, language = {en} } @article{BroekerSinelnikovGustavusetal.2019, author = {Br{\"o}ker, Katharine and Sinelnikov, Evgeny and Gustavus, Dirk and Schumacher, Udo and P{\"o}rtner, Ralf and Hoffmeister, Hans and L{\"u}th, Stefan and Dammermann, Werner}, title = {Mass Production of Highly Active NK Cells for Cancer Immunotherapy in a GMP Conform Perfusion Bioreactor}, series = {Frontiers in Bioengineering and Biotechnology}, volume = {7}, journal = {Frontiers in Bioengineering and Biotechnology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {2296-4185}, doi = {10.3389/fbioe.2019.00194}, pages = {17}, year = {2019}, abstract = {NK cells have emerged as promising candidates for cancer immunotherapy, especially due to their ability to fight circulating tumor cells thereby preventing metastases formation. Hence several studies have been performed to generate and expand highly cytotoxic NK cells ex vivo, e.g., by using specific cytokines to upregulate both their proliferation and surface expression of distinct activating receptors. Apart from an enhanced activity, application of NK cells as immunotherapeutic agent further requires sufficient cell numbers and a high purity. All these parameters depend on a variety of different factors including the starting material, additives like cytokines as well as the culture system. Here we analyzed PBMC-derived NK cells of five anonymized healthy donors expanded under specific conditions in an innovative perfusion bioreactor system with respect to their phenotype, IFN gamma production, and cytotoxicity in vitro. Important features of the meander type bioreactors used here are a directed laminar flow of medium and control of relevant process parameters. Cells are cultivated under "steady state" conditions in perfusion mode. Our data demonstrate that expansion of CD3(+) T cell depleted PBMCs in our standardized system generates massive amounts of highly pure (>85\%) and potent anticancer active NK cells. These cells express a variety of important receptors driving NK cell recruitment, adhesion as well as activation. More specifically, they express the chemokine receptors CXCR3, CXCR4, and CCR7, the adhesion molecules L-selectin, LFA-1, and VLA-4, the activating receptors NKp30, NKp44, NKp46, NKG2D, DNAM1, and CD16 as well as the death ligands TRAIL and Fas-L. Moreover, the generated NK cells show a strong IFN gamma expression upon cultivation with K562 tumor cells and demonstrate a high cytotoxicity toward leukemic as well as solid tumor cell lines in vitro. Altogether, these characteristics promise a high clinical potency of thus produced NK cells awaiting further evaluation.}, language = {en} } @article{AdemKueteMbavengetal.2019, author = {Adem, Fozia A. and Kuete, Victor and Mbaveng, Armelle T. and Heydenreich, Matthias and Koch, Andreas and Ndakala, Albert and Irungu, Beatrice and Yenesew, Abiy and Efferth, Thomas}, title = {Cytotoxic flavonoids from two Lonchocarpus species}, series = {Natural Product Research}, volume = {33}, journal = {Natural Product Research}, number = {18}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {1478-6419}, doi = {10.1080/14786419.2018.1462179}, pages = {2609 -- 2617}, year = {2019}, abstract = {A new isoflavone, 4′-prenyloxyvigvexin A (1) and a new pterocarpan, (6aR,11aR)-3,8-dimethoxybitucarpin B (2) were isolated from the leaves of Lonchocarpus bussei and the stem bark of Lonchocarpus eriocalyx, respectively. The extract of L. bussei also gave four known isoflavones, maximaisoflavone H, 7,2′-dimethoxy-3′,4′-methylenedioxyisoflavone, 6,7,3′-trimethoxy-4′,5′-methylenedioxyisoflavone, durmillone; a chalcone, 4-hydroxylonchocarpin; a geranylated phenylpropanol, colenemol; and two known pterocarpans, (6aR,11aR)-maackiain and (6aR,11aR)-edunol. (6aR,11aR)-Edunol was also isolated from the stem bark of L. eriocalyx. The structures of the isolated compounds were elucidated by spectroscopy. The cytotoxicity of the compounds was tested by resazurin assay using drug-sensitive and multidrug-resistant cancer cell lines. Significant antiproliferative effects with IC50 values below 10 μM were observed for the isoflavones 6,7,3′-trimethoxy-4′,5′-methylenedioxyisoflavone and durmillone against leukemia CCRF-CEM cells; for the chalcone, 4-hydroxylonchocarpin and durmillone against its resistant counterpart CEM/ADR5000 cells; as well as for durmillone against the resistant breast adenocarcinoma MDA-MB231/BCRP cells and resistant gliobastoma U87MG.ΔEGFR cells.}, language = {en} } @article{AwanSchiebelBoehmetal.2019, author = {Awan, Asad Bashir and Schiebel, Juliane and Boehm, Alexander and Nitschke, Joerg and Sarwar, Yasra and Schierack, Peter and Ali, Aamir}, title = {Association of biofilm formation and cytotoxic potential with multidrug resistance in clinical isolates of pseudomonas aeruginosa}, series = {EXCLI Journal}, volume = {18}, journal = {EXCLI Journal}, publisher = {Leibniz Research Centre for Working Environment and Human Factors}, address = {Dortmund}, issn = {1611-2156}, doi = {10.17179/excli2018-1948}, pages = {79 -- 90}, year = {2019}, abstract = {Multidrug resistant (MDR) Pseudomonas aeruginosa having strong biofilm potential and virulence factors are a serious threat for hospitalized patients having compromised immunity In this study, 34 P. aeruginosa isolates of human origin (17 MDR and 17 non-MDR clinical isolates) were checked for biofilm formation potential in enriched and minimal media. The biofilms were detected using crystal violet method and a modified software package of the automated VideoScan screening method. Cytotoxic potential of the isolates was also investigated on HepG2, LoVo and T24 cell lines using automated VideoScan technology. Pulse field gel electrophoresis revealed 10 PFGE types in MDR and 8 in non-MDR isolates. Although all isolates showed biofilm formation potential, strong biofilm formation was found more in enriched media than in minimal media. Eight MDR isolates showed strong biofilm potential in both enriched and minimal media by both detection methods. Strong direct correlation between crystal violet and VideoScan methods was observed in identifying strong biofilm forming isolates. High cytotoxic effect was observed by 4 isolates in all cell lines used while 6 other isolates showed high cytotoxic effect on T24 cell line only. Strong association of multidrug resistance was found with biofilm formation as strong biofilms were observed significantly higher in MDR isolates (p-value < 0.05) than non-MDR isolates. No significant association of cytotoxic potential with multidrug resistance or biofilm formation was found (p-value > 0.05). The MDR isolates showing significant cytotoxic effects and strong biofilm formation impose a serious threat for hospitalized patients with weak immune system.}, language = {en} } @article{MuivaMutisyaAtilawHeydenreichetal.2018, author = {Muiva-Mutisya, Lois M. and Atilaw, Yoseph and Heydenreich, Matthias and Koch, Andreas and Akala, Hoseah M. and Cheruiyot, Agnes C. and Brown, Matthew L. and Irungu, Beatrice and Okalebo, Faith A. and Derese, Solomon and Mutai, Charles and Yenesew, Abiy}, title = {Antiplasmodial prenylated flavanonols from Tephrosia subtriflora}, series = {Natural Product Research}, volume = {32}, journal = {Natural Product Research}, number = {12}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {1478-6419}, doi = {10.1080/14786419.2017.1353510}, pages = {1407 -- 1414}, year = {2018}, abstract = {The CH2Cl2/MeOH (1:1) extract of the aerial parts of Tephrosia subtriflora afforded a new flavanonol, named subtriflavanonol (1), along with the known flavanone spinoflavanone B, and the known flavanonols MS-II (2) and mundulinol. The structures were elucidated by the use of NMR spectroscopy and mass spectrometry. The absolute configuration of the flavanonols was determined based on quantum chemical ECD calculations. In the antiplasmodial assay, compound 2 showed the highest activity against chloroquine-sensitive Plasmodiumfalciparum reference clones (D6 and 3D7), artemisinin-sensitive isolate (F32-TEM) as well as field isolate (KSM 009) with IC50 values 1.4-4.6M without significant cytotoxicity against Vero and HEp2 cell lines (IC50>100M). The new compound (1) showed weak antiplasmodial activity, IC50 12.5-24.2M, but also showed selective anticancer activity against HEp2 cell line (CC50 16.9M). [GRAPHICS] .}, language = {en} } @article{MuthauraKerikoMutaietal.2017, author = {Muthaura, Charles N. and Keriko, Joseph M. and Mutai, Charles and Yenesew, Abiy and Heydenreich, Matthias and Atilaw, Yoseph and Gathirwa, Jeremiah W. and Irungu, Beatrice N. and Derese, Solomon}, title = {Antiplasmodial, cytotoxicity and phytochemical constituents of four maytenus species used in traditional medicine in Kenya}, series = {The natural products journal}, volume = {7}, journal = {The natural products journal}, number = {2}, publisher = {Bentham Science Publ.}, address = {Sharjah}, issn = {2210-3155}, doi = {10.2174/2210315507666161206144050}, pages = {144 -- 152}, year = {2017}, abstract = {Background: In Kenya, several species of the genus Maytenus are used in traditional medicine to treat many diseases including malaria. In this study, phytochemical constituents and extracts of Maytenus undata, M. putterlickioides, M. senegalensis and M. heterophylla were evaluated to determine compound/s responsible for antimalarial activity. Objective: To isolate antiplasmodial compounds from these plant species which could be used as marker compounds in the standardization of their extracts as a phytomedicine for malaria. Methods: Constituents were isolated through activity-guided fractionation of the MeOH/CHCl3 (1:1) extracts and in vitro inhibition of Plasmodium falciparum. Cytotoxicity was evaluated using Vero cells and the compounds were elucidated on the basis of NMR spectroscopy. Results: Fractionation of the extracts resulted in the isolation of ten known compounds. Compound 1 showed promising antiplasmodial activity with IC50, 3.63 and 3.95 ng/ml against chloroquine sensitive (D6) and resistant (W2) P. falciparum, respectively and moderate cytotoxicity (CC50, 37.5 ng/ml) against Vero E6 cells. The other compounds showed weak antiplasmodial (IC50 > 1.93 mu g/ml) and cytotoxic (CC50 > 39.52 mu g/ml) activities against P. falciparum and Vero E6 cells, respectively. Conclusion: (20 alpha)-3-hydroxy-2-oxo-24-nor-friedela-1(10),3,5,7-tetraen-carboxylic acid-(29)-methyl-ester (pristimerin) (1) was the most active marker and lead compound that warrants further investigation as a template for the development of new antimalarial drugs. Pristimerin is reported for the first time in M. putterlickioides. 3-Hydroxyolean-12-en-28-oic acid (oleanolic acid) (5), stigmast-5-en-3-ol (beta-sitosterol) (6), 3-oxo-28-friedelanoic acid (7), olean-12-en-3-ol (beta-amyrin) (8), lup-20(29)-en-3-ol (lupeol) (9) and lup-20(29)-en-3-one (lupenone) (10) are reported for the first time in M. undata.}, language = {en} } @article{KumarBasuLemkeetal.2016, author = {Kumar, Reddi K. and Basu, Sayantani and Lemke, Horst-Dieter and Jankowski, Joachim and Kratz, Karl and Lendlein, Andreas and Tetali, Sarada D.}, title = {Effect of extracts of poly(ether imide) microparticles on cytotoxicity, ROS generation and proinflammatory effects on human monocytic (THP-1) cells}, series = {Clinical hemorheology and microcirculation : blood flow and vessels}, volume = {61}, journal = {Clinical hemorheology and microcirculation : blood flow and vessels}, publisher = {IOS Press}, address = {Amsterdam}, issn = {1386-0291}, doi = {10.3233/CH-152027}, pages = {667 -- 680}, year = {2016}, abstract = {A high cell viability of around 99 +/- 18\% and 99 +/- 5\% was observed when THP-1 cells were cultured in the presence of aqueous extracts of the PEI microparticles in medium A and medium B respectively. The obtained microscopic data suggested that PEI particle extracts have no significant effect on cell death, oxidative stress or differentiation to macrophages. It was further found that the investigated proinflammatory markers in THP-1 cells were not up-regulated. These results are promising with regard to the biocompatibility of PEI microparticles and in a next step the hemocompatibility of the microparticles will be examined.}, language = {en} }