@article{KuehnScherbaum2015, author = {K{\"u}hn, Nico M. and Scherbaum, Frank}, title = {Ground-motion prediction model building: a multilevel approach}, series = {Bulletin of earthquake engineering : official publication of the European Association for Earthquake Engineering}, volume = {13}, journal = {Bulletin of earthquake engineering : official publication of the European Association for Earthquake Engineering}, number = {9}, publisher = {Springer}, address = {Dordrecht}, issn = {1570-761X}, doi = {10.1007/s10518-015-9732-3}, pages = {2481 -- 2491}, year = {2015}, abstract = {A Bayesian ground-motion model is presented that directly estimates the coefficients of the model and the correlation between different ground-motion parameters of interest. The model is developed as a multi-level model with levels for earthquake, station and record terms. This separation allows to estimate residuals for each level and thus the estimation of the associated aleatory variability. In particular, the usually estimated within-event variability is split into a between-station and between-record variability. In addition, the covariance structure between different ground-motion parameters of interest is estimated for each level, i.e. directly the between-event, between-station and between-record correlation coefficients are available. All parameters of the model are estimated via Bayesian inference, which allows to assess their epistemic uncertainty in a principled way. The model is developed using a recently compiled European strong-motion database. The target variables are peak ground velocity, peak ground acceleration and spectral acceleration at eight oscillator periods. The model performs well with respect to its residuals, and is similar to other ground-motion models using the same underlying database. The correlation coefficients are similar to those estimated for other parts of the world, with nearby periods having a high correlation. The between-station, between-event and between-record correlations follow generally a similar trend.}, language = {en} } @article{StrolloParolaiBindietal.2012, author = {Strollo, Angelo and Parolai, Stefano and Bindi, Dino and Chiauzzi, Leonardo and Pagliuca, Rossella and Mucciarelli, Marco and Zschau, Jochen}, title = {Microzonation of Potenza (Southern Italy) in terms of spectral intensity ratio using joint analysis of earthquakes and ambient noise}, series = {Bulletin of earthquake engineering : official publication of the European Association for Earthquake Engineering}, volume = {10}, journal = {Bulletin of earthquake engineering : official publication of the European Association for Earthquake Engineering}, number = {2}, publisher = {Springer}, address = {Dordrecht}, issn = {1570-761X}, doi = {10.1007/s10518-011-9256-4}, pages = {493 -- 516}, year = {2012}, abstract = {A temporary seismic network composed of 11 stations was installed in the city of Potenza (Southern Italy) to record local and regional seismicity within the context of a national project funded by the Italian Department of Civil Protection (DPC). Some stations were moved after a certain time in order to increase the number of measurement points, leading to a total of 14 sites within the city by the end of the experiment. Recordings from 26 local earthquakes (M-l 2.2-3.8 ) were analyzed to compute the site responses at the 14 sites by applying both reference and non-reference site techniques. Furthermore, the Spectral Intensity (SI) for each local earthquake, as well as their ratios with respect to the values obtained at a reference site, were also calculated. In addition, a field survey of 233 single station noise measurements within the city was carried out to increase the information available at localities different from the 14 monitoring sites. By using the results of the correlation analysis between the horizontal-to-vertical spectral ratios computed from noise recordings (NHV) at the 14 selected sites and those derived by the single station noise measurements within the town as a proxy, the spectral intensity correction factors for site amplification obtained from earthquake analysis were extended to the entire city area. This procedure allowed us to provide a microzonation map of the urban area that can be directly used when calculating risk scenarios for civil defence purposes. The amplification factors estimated following this approach show values increasing along the main valley toward east where the detrital and alluvial complexes reach their maximum thickness.}, language = {en} }