@phdthesis{Dambowsky2021, author = {Dambowsky, Ina}, title = {Bioinspirierte Komposite - Strukturbildung durch Verkleben von Nano- oder Mesokristallen mit funktionalisierten Poly(2-oxazolin)en}, doi = {10.25932/publishup-52367}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-523671}, school = {Universit{\"a}t Potsdam}, pages = {XII, 220}, year = {2021}, abstract = {Die herausragenden mechanischen Eigenschaften nat{\"u}rlicher anorganisch-organischer Kompositmaterialien wie Knochen oder Muschelschalen entspringen ihrer hierarchischen Struktur, die von der nano- bis hinauf zur makroskopischen Ebene reicht, und einer kontrollierten Verbindung entlang der Grenzfl{\"a}chen der anorganischen und organischen Komponenten. Ausgehend von diesen Schl{\"u}sselprinzipien des biologischen Materialdesigns wurden in dieser Arbeit zwei Konzepte f{\"u}r die bioinspirierte Strukturbildung von Kompositen untersucht, die auf dem Verkleben von Nano- oder Mesokristallen mit funktionalisierten Poly(2-oxazolin)-Blockcopolymeren beruhen sowie deren Potenzial zur Herstellung bioinspirierter selbstorganisierter hierarchischer anorganisch-organischer Verbundstrukturen ohne {\"a}ußere Kr{\"a}fte beleuchtet. Die Konzepte unterschieden sich in den verwendeten anorganischen Partikeln und in der Art der Strukturbildung. {\"U}ber einen modularen Ansatz aus Polymersynthese und polymeranaloger Thiol-En-Funktionalisierung wurde erfolgreich eine Bibliothek von Poly(2-oxazolin)en mit unterschiedlichen Funktionalit{\"a}ten erstellt. Die Blockcopolymere bestehen aus einem kurzen partikelaffinen "Klebeblock", der aus Thiol-En-funktionalisiertem Poly(2-(3-butenyl)-2-oxazolin) besteht, und einem langen wasserl{\"o}slichen, strukturbildenden Block, der aus thermoresponsivem und kristallisierbarem Poly(2-isopropyl-2-oxazolin) besteht und hierarchische Morphologien ausbildet. Verschiedene analytische Untersuchungen wie Turbidimetrie, DLS, DSC, SEM oder XRD machten das thermoresponsive bzw. das Kristallisationsverhalten der Blockcopolymere in Abh{\"a}ngigkeit vom eingef{\"u}hrten Klebeblock zug{\"a}nglich. Es zeigte sich, dass diese Polymere ein komplexes temperatur- und pH-abh{\"a}ngiges Tr{\"u}bungsverhalten aufweisen. Hinsichtlich der Kristallisation {\"a}nderte der Klebeblock nicht die nanoskopische Kristallstruktur; er beeinflusste jedoch die Kristallisationszeit, den Kristallisationsgrad und die hierarchische Morphologie. Dieses Ergebnis wurde auf das unterschiedliche Aggregationsverhalten der Polymere in Wasser zur{\"u}ckgef{\"u}hrt. F{\"u}r die Herstellung von Kompositen nutzte Konzept 1 mikrometergroße Kupferoxalat-Mesokristalle, die eine innere Nanostruktur aufweisen. Die Strukturbildung {\"u}ber den anorganischen Teil wurde durch das Verkleben und Anordnen dieser Partikel erstrebt. Konzept 1 erm{\"o}glichte homogene freistehende stabile Kompositfilme mit einem hohen anorganischen Anteil. Die Partikel-Polymer-Kombination vereinte jedoch ung{\"u}nstige Eigenschaften in sich, d. h. ihre L{\"a}ngenskalen waren zu unterschiedlich, was die Selbstassemblierung der Partikel verhinderte. Aufgrund des geringen Aspektverh{\"a}ltnisses von Kupferoxalat blieb auch die gegenseitige Ausrichtung durch {\"a}ußere Kr{\"a}fte erfolglos. Im Ergebnis eignet sich das Kupferoxalat-Poly(2-oxazolin)-Modellsystem nicht f{\"u}r die Herstellung hierarchischer Kompositstrukturen. Im Gegensatz dazu verwendet Konzept 2 scheibenf{\"o}rmige Laponit®-Nanopartikel und kristallisierbare Blockcopolymere zur Strukturbildung {\"u}ber die organische Komponente durch polymervermittelte Selbstassemblierung. Komplement{\"a}re Analysemethoden (Zeta-Potenzial, DLS, SEM, XRD, DSC, TEM) zeigten sowohl eine kontrollierte Wechselwirkung zwischen den Komponenten in w{\"a}ssriger Umgebung als auch eine kontrollierte Strukturbildung, die in selbstassemblierten Nanokompositen resultiert, deren Struktur sich {\"u}ber mehrere L{\"a}ngenskalen erstreckt. Es wurde gezeigt, dass die negativ geladenen Klebebl{\"o}cke spezifisch und selektiv an den positiv geladenen R{\"a}ndern der Laponit®-Partikel binden und so Polymer-Laponit®-Nanohybridpartikel entstehen, die als Grundbausteine f{\"u}r die Kompositbildung dienen. Die Hybridpartikel sind bei Raumtemperatur elektrosterisch stabilisiert - sterisch durch ihre langen, mit Wasser wechselwirkenden Poly(2-isopropyl-2-oxazolin)-Bl{\"o}cke und elektrostatisch {\"u}ber die negativ geladenen Laponit®-Fl{\"a}chen. Im Ergebnis ließ sich Konzept 2 und damit die Strukturbildung {\"u}ber die organische Komponente erfolgreich umsetzten. Das Laponit®-Poly(2-oxazolin)-Modellsystem er{\"o}ffnete den Weg zu selbstassemblierten geschichteten quasi-hierarchischen Nanokompositstrukturen mit hohem anorganischen Anteil. Abh{\"a}ngig von der frei verf{\"u}gbaren Polymerkonzentration bei der Kompositbildung entstanden zwei unterschiedliche Komposit-Typen. Dar{\"u}ber hinaus entwarf die Arbeit einen Erkl{\"a}rungsansatz f{\"u}r den polymervermittelten Bildungsprozess der Komposit-Strukturen. Insgesamt legt diese Arbeit Struktur-Prozess-Eigenschafts-Beziehungen offen, um selbstassemblierte bioinspirierte Kompositstrukturen zu bilden und liefert neue Einsichten zu einer geeigneten Kombination an Komponenten und Herstellungsbedingungen, die eine kontrollierte selbstassemblierte Strukturbildung mithilfe funktionalisierter Poly(2-oxazolin)-Blockcopolymere erlauben.}, language = {de} } @article{ThielkeSeckerSchlaadetal.2016, author = {Thielke, Michael W. and Secker, Christian and Schlaad, Helmut and Theato, Patrick}, title = {Electrospinning of Crystallizable Polypeptoid Fibers}, series = {Macromolecular rapid communications}, volume = {37}, journal = {Macromolecular rapid communications}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1022-1336}, doi = {10.1002/marc.201500502}, pages = {100 -- 104}, year = {2016}, abstract = {A unique fabrication process of low molar mass, crystalline polypeptoid fibers is described. Thermoresponsive fiber mats are prepared by electrospinning a homogeneous blend of semicrystalline poly(N-(n-propyl) glycine) (PPGly; 4.1 kDa) with high molar mass poly(ethylene oxide) (PEO). Annealing of these fibers at approximate to 100 degrees C selectively removes the PEO and produces stable crystalline fiber mats of pure PPGly, which are insoluble in aqueous solution but can be redissolved in methanol or ethanol. The formation of water-stable polypeptoid fiber mats is an important step toward their utilization in biomedical applications such as tissue engineering or wound dressing.}, language = {en} } @phdthesis{Buller2013, author = {Buller, Jens}, title = {Entwicklung neuer stimuli-sensitiver Hydrogelfilme als Plattform f{\"u}r die Biosensorik}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-66261}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {Diese Arbeit befasst sich mit der Synthese und der Charakterisierung von thermoresponsiven Polymeren und ihrer Immobilisierung auf festen Oberfl{\"a}chen als nanoskalige d{\"u}nne Schichten. Dabei wurden thermoresponsive Polymere vom Typ der unteren kritischen Entmischungstemperatur (engl.: lower critical solution temperature, LCST) verwendet. Sie sind bei niedrigeren Temperaturen im L{\"o}sungsmittel gut und nach Erw{\"a}rmen oberhalb einer bestimmten kritischen Temperatur nicht mehr l{\"o}slich; d. h. sie weisen bei einer bestimmten Temperatur einen Phasen{\"u}bergang auf. Als Basismaterial wurden verschiedene thermoresponsive und biokompatible Polymere basierend auf Diethylenglykolmethylethermethacrylat (MEO2MA) und Oligo(ethylenglykol)methylethermethacrylat (OEGMA475, Mn = 475 g/ mol) {\"u}ber frei radikalische Copolymerisation synthetisiert. Der thermoresponsive Phasen{\"u}bergang der Copolymere wurde in w{\"a}ssriger L{\"o}sung und in gequollenen vernetzten d{\"u}nnen Schichten beobachtet. Außerdem wurde untersucht, inwiefern eine selektive Proteinbindung an geeignete funktionalisierte Copolymere die Phasen{\"u}bergangstemperatur beeinflusst. Die thermoresponsiven Copolymere wurden {\"u}ber photovernetzbare Gruppen auf festen Oberfl{\"a}chen immobilisiert. Die n{\"o}tigen lichtempfindlichen Vernetzereinheiten wurden mittels des polymerisierbaren Benzophenonderivates 2 (4 Benzoylphenoxy)ethylmethacrylat (BPEM) in das Copolymer integriert. D{\"u}nne Filme der Copolymere mit ca. 100 nm Schichtdicke wurden {\"u}ber Rotationsbeschichtung auf Siliziumwafer aufgeschleudert und anschließend durch Bestrahlung mit UV Licht vernetzt und auf der Oberfl{\"a}che immobilisiert. Die Filme sind stabiler je gr{\"o}ßer der Vernetzeranteil und je gr{\"o}ßer die Molmasse der Copolymere ist. Bei einem Waschprozess nach der Vernetzung wird beispielsweise aus einem Film mit moderater Molmasse und geringem Vernetzeranteil mehr unvernetztes Copolymer ausgewaschen als bei einem h{\"o}hermolekularen Copolymer mit hohem Vernetzeranteil. Die Quellbarkeit der Polymerschichten wurde mit Ellipsometrie untersucht. Sie ist gr{\"o}ßer je geringer der Vernetzeranteil in den Copolymeren ist. Schichten aus thermoresponsiven OEG Copolymeren zeigen einen Volumenphasen{\"u}bergang vom Typ der LCST. Der thermoresponsive Kollaps der Schichten ist komplett reversibel, die Kollapstemperatur kann {\"u}ber die Zusammensetzung der Copolymere eingestellt werden. F{\"u}r einen Vergleich dieser Eigenschaften mit dem gut charakterisierten und derzeit wohl am h{\"a}ufigsten untersuchten thermoresponsiven Polymer Poly(N-isopropylacrylamid) (PNIPAM) wurden zus{\"a}tzlich photovernetzte Schichten aus PNIPAM hergestellt und ebenfalls ellipsometrisch vermessen. Im Vergleich zu PNIPAM verl{\"a}uft der Phasen{\"u}bergang der Schichten aus den Copolymeren mit Oligo(ethylenglykol)-seitenketten (OEG Copolymere) {\"u}ber einen gr{\"o}ßeren Temperaturbereich. Mit Licht einer Wellenl{\"a}nge > 300 nm wurden die photosensitiven Benzophenongruppen selektiv angeregt. Bei der Verwendung kleinerer Wellenl{\"a}ngen vernetzten die Copolymerschichten auch ohne die Anwesenheit der lichtempfindlichen Benzophenongruppen. Dieser Effekt ließ sich zur kontrollierten Immobilisierung und Vernetzung der OEG Copolymere einsetzen. Als weitere Methode zur Immobilisierung der Copolymere wurde die Anbindung {\"u}ber Amidbindungen untersucht. Dazu wurden OEG Copolymere mit dem carboxylgruppenhaltigen 2 Succinyloxyethylmethacrylat (MES) auf mit 3 Aminopropyldimethylethoxysilan (APDMSi) silanisierte Siliziumwafer rotationsbeschichtet, und mit dem oligomeren α, ω Diamin Jeffamin® ED 900 vernetzt. Die Vernetzungsreaktion erfolgte ohne weitere Zus{\"a}tze durch Erhitzen der Proben. Die Hydrogelschichten waren anschließend stabil und zeigten neben thermoresponsivem auch pH responsives Verhalten. Um zu untersuchen, ob die Phasen{\"u}bergangstemperatur durch eine Proteinbindung beeinflusst werden kann, wurde ein polymerisierbares Biotinderivat 2 Biotinyl-aminoethylmethacrylat (BAEMA) in das thermoresponsive Copolymer eingebaut. Der Einfluss des biotinbindenen Proteins Avidin auf das thermoresponsive Verhalten des Copolymers in L{\"o}sung wurde untersucht. Die spezifische Bindung von Avidin an das biotinylierte Copolymer verschob die {\"U}bergangstemperatur deutlich zu h{\"o}heren Temperaturen. Kontrollversuche zeigten, dass dieses Verhalten auf eine selektive Proteinbindung zur{\"u}ckzuf{\"u}hren ist. Thermoresponsive OEG Copolymere mit photovernetzbaren Gruppen aus BPEM und Biotingruppen aus BAEMA wurden {\"u}ber Rotationsbeschichtung auf Gold- und auf Siliziumoberfl{\"a}chen aufgetragen und durch UV Strahlung vernetzt. Die spezifische Bindung von Avidin an die Copolymerschicht wurde mit Oberfl{\"a}chenplasmonenresonanz und Ellipsometrie untersucht. Die Bindungskapazit{\"a}t der Schichten war umso gr{\"o}ßer, je kleiner der Vernetzeranteil, d. h. je gr{\"o}ßer die Maschenweite des Netzwerkes war. Die Quellbarkeit der Schichten wurde durch die Avidinbindung erh{\"o}ht. Bei hochgequollenen Systemen verursachte eine Mehrfachbindung des tetravalenten Avidins allerdings eine zus{\"a}tzliche Quervernetzung des Polymernetzwerkes. Dieser Effekt wirkt der erh{\"o}hten Quellbarkeit durch die Avidinbindung entgegen und l{\"a}sst die Polymernetzwerke schrumpfen.}, language = {de} } @phdthesis{Chea2022, author = {Chea, Sany}, title = {Glycomaterials: From synthesis of glycoconjugates to potential biomedical applications}, doi = {10.25932/publishup-57424}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-574240}, school = {Universit{\"a}t Potsdam}, pages = {XVII, 217}, year = {2022}, abstract = {The importance of carbohydrate structures is enormous due to their ubiquitousness in our lives. The development of so-called glycomaterials is the result of this tremendous significance. These are not exclusively used for research into fundamental biological processes, but also, among other things, as inhibitors of pathogens or as drug delivery systems. This work describes the development of glycomaterials involving the synthesis of glycoderivatives, -monomers and -polymers. Glycosylamines were synthesized as precursors in a single synthesis step under microwave irradiation to significantly shorten the usual reaction time. Derivatization at the anomeric position was carried out according to the methods developed by Kochetkov and Likhorshetov, which do not require the introduction of protecting groups. Aminated saccharide structures formed the basis for the synthesis of glycomonomers in β-configuration by methacrylation. In order to obtain α-Man-based monomers for interactions with certain α-Man-binding lectins, a monomer synthesis by Staudinger ligation was developed in this work, which also does not require protective groups. Modification of the primary hydroxyl group of a saccharide was accomplished by enzyme-catalyzed synthesis. Ribose-containing cytidine was transesterified using the lipase Novozym 435 and microwave irradiation. The resulting monomer synthesis was optimized by varying the reaction partners. To create an amide bond instead of an ester bond, protected cytidine was modified by oxidation followed by amide coupling to form the monomer. This synthetic route was also used to isolate the monomer from its counterpart guanosine. After obtaining the nucleoside-based monomers, they were block copolymerized using the RAFT method. Pre-synthesized pHPMA served as macroCTA to yield cytidine- or guanosine-containing block copolymer. These isolated block copolymers were then investigated for their self-assembly behavior using UV-Vis, DLS and SEM to serve as a potential thermoresponsive drug delivery system.}, language = {en} } @phdthesis{Enzenberg2015, author = {Enzenberg, Anne}, title = {Neue fluoreszierende Copolymere f{\"u}r sensitive Detektionssysteme in Wasser}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-82325}, school = {Universit{\"a}t Potsdam}, pages = {xvi, 156, KK}, year = {2015}, abstract = {Ziel dieser Arbeit war die Synthese und Charakterisierung von neuartigen fluoreszierenden Copolymeren zur Analytdetektion in w{\"a}ssrigen Systemen. Das Detektionssystem sollte ein einfaches Schalten der Fluoreszenz bei Analytbindung „Aus" bzw. Verdr{\"a}ngung „An" erm{\"o}glichen. Daf{\"u}r wurde die Synthese eines funktionalisierten Monomers so geplant, dass sich Fluorophor und Analyt innerhalb derselben Monomereinheit in direkter Nachbarschaft zueinander befinden. So sollten bei Erkennung des Analyten durch eine mit einem Fluoreszenzl{\"o}scher funktionalisierte Erkennungsstruktur Fluorophor und L{\"o}scher in einen vorgegebenen Abstand zueinander gezwungen und die Fluoreszenz des Fluorophors effizient gel{\"o}scht werden. Bei anschließender Verdr{\"a}ngung der Erkennungseinheit durch einen st{\"a}rker bindenden Analyten sollte die Fluoreszenz wieder „angeschaltet" werden. Eine weitere Zielstellung f{\"u}r das Detektionssystem war eine hohe L{\"o}slichkeit und Fluoreszenzintensit{\"a}t in Wasser. Da die Anwendung solcher Sensoren besonders in der Medizin und Biologie, z.B. f{\"u}r Schnellerkennungstest von Pathogenen, von Interesse ist, ist die Kompatibilit{\"a}t mit w{\"a}ssrigen Medien essentiell. Die funktionalisierten Monomere wurden frei radikalisch mit N Vinyl-pyrrolidon bzw. N Vinyl¬caprolactam zu wasserl{\"o}slichen, fluoreszierenden Copolymeren umgesetzt. In den N-Vinyl¬pyrrolidon-Polymeren (PNVP) wurde RhodaminB, in den thermoresponsiven N Vinyl¬caprolactam-Polymeren (PNVCL) ein Naphthals{\"a}ureimid als Fluorophor verwendet. W{\"a}hrend Rhodamine eine hohe Fluoreszenzintensit{\"a}t, gute Quantenausbeuten und hohen Extinktionskoeffizienten in Wasser zeigen, sind Naphthals{\"a}ure¬imide umgebungssensitive Chromophore, die bei {\"A}nderung ihrer L{\"o}sungsmittelumgebung, wie z.B. beim Kollaps eines thermoresponsiven Polymers in Wasser, ihre Fluoreszenzintensit{\"a}t und Quantenausbeute drastisch {\"a}ndern k{\"o}nnen. Der Vorteil der hier verwendeten Strategie der Monomersynthese liegt darin, dass bei jeder spezifischen Analytdetektion durch eine Erkennungseinheit die Fluoreszenz effizient gel{\"o}scht bzw. bei Verdr{\"a}ngung durch einen st{\"a}rker bindenden Analyten wieder „angeschaltet" wird. Dieses Prinzip wird bereits vielfach in der Biologie in sogenannten „Molecular Beacons" ausgenutzt, wobei ein Fluorophor und ein L{\"o}scher durch spezifische DNA Basenpaarung in einen vorgegebenen Abstand zueinander gezwungen werden und so ein „Schalten" der Fluoreszenz erm{\"o}glichen. Aufgrund der vorgegebenen Struktur der DNA Basensequenzen ist es jedoch nicht direkt auf andere Erkennungsreaktionen {\"u}bertragbar. Daher wurde ein Modellsystem entwickelt, welches die M{\"o}glichkeit bietet Analyt, Erkennungseinheit und Signalgeber variabel, je nach Anforderungen des Systems, auszutauschen. So soll es m{\"o}glich sein, den Sensor a priori f{\"u}r jede Erkennungs¬reaktion zu verwenden. Als Modell Bindungs¬paare wurden ß Cyclodextrin/Adamantan und Con¬cana¬valinA/Mannose ausgew{\"a}hlt. Adamantan bzw. Mannose wurde als Analyt zusammen mit dem Fluorophor in das Polymer eingebunden. ß Cyclo¬dextrin (ß CD) bzw. ConcanavalinA (ConA) wurde als Erkennungsstruktur an einem Fluoreszenzl{\"o}scher immobilisiert. Polymer-basierte Fluoreszenzsensoren sind in der Fachliteratur gut dokumentiert. In der Regel sind Signalgeber und Analyt jedoch statistisch im Polymer verteilt, da sie sich entweder in unterschiedlichen Monomereinheiten befinden oder die Funktionalisierung durch eine polymeranaloge Umsetzung erfolgt. Der gew{\"a}hlte Ansatz Fluorophor und Analyt innerhalb derselben Monomereinheit einzubinden, soll bei jeder Erkennungsreaktion des Analyten zu einer {\"A}nderung der Signalintensit{\"a}t des Fluorophors f{\"u}hren. Eine hohe Signalintensit{\"a}t bei Analytdetektion ist w{\"u}nschenswert, insbesondere f{\"u}r Erkennungsreaktionen, die mit m{\"o}glichst geringem apparativem Aufwand, am besten mit dem bloßen Auge zu verfolgen sein sollen. Des Weiteren ist es m{\"o}glich den Fluorophorgehalt im Polymer genau einzustellen und so Selbstl{\"o}schung zu vermeiden. Die synthetisierten Polymere haben einen Fluorophorgehalt von 0,01 mol\% bis 0,5 mol\%. F{\"u}r die RhodaminB haltigen Polymere zeigte sich, dass ein Fluorophorgehalt unterhalb 0,1 mol\% im Polymer die h{\"o}chsten Ausbeuten, Molmassen und Quantenausbeuten liefert. F{\"u}r die Naphthals{\"a}ureimid haltigen Polymere hingegen wurden auch f{\"u}r einen Fluorophorgehalt von bis zu 1 mol\% hohe Ausbeuten und Molmassen erreicht. Die Naphthals{\"a}ureimid haltigen Polymere haben jedoch in w{\"a}ssriger L{\"o}sungsmittelumgebung nur geringe Quantenausbeuten. Als Fluoreszenzl{\"o}scher wurden Goldnanopartikel synthetisiert, die mit den entsprechenden Erkennungsstrukturen (ß-CD oder ConA) f{\"u}r den verwendeten Analyten funktionalisiert wurden. Goldnanopartikel als L{\"o}scher bieten den Vorteil, dass ihre Dispergierbarkeit in einem L{\"o}semittel durch Funktionalisierung ihrer H{\"u}lle gezielt gesteuert werden kann. Durch die hohe Affinit{\"a}t von Goldnanopartikeln zu Thiolen und Aminen konnten sie mit Hilfe einfacher Syntheseschritte mit Thio ß CD Derivaten bzw. ConA funktionalisiert werden. In der hier vorgelegten Arbeit sollte ein Modellsystem f{\"u}r einen solches fluoreszenz-basiertes Detektionssystem in Wasser entwickelt werden. Nachfolgend werden die zu erf{\"u}llenden strukturellen Voraussetzungen f{\"u}r die Synthese eines solchen Sensors nochmals zusammengefasst: 1. Verwendung eines Fluorophors, der eine hohe Signalintensit{\"a}t zeigt. 2. Analyt bzw. Erkennungseinheit soll sich im Abstand von wenigen Nanometern zum Signalgeber befinden, um bei jeder Detektionsreaktion die Signalintensit{\"a}t des Signalgebers beeinflussen zu k{\"o}nnen. 3. Die Detektionseinheit ben{\"o}tigt eine funktionelle Gruppe zur Immobilisierung. Immobilisierung kann z.B. durch Einbindung in ein Polymer erfolgen. 4. Der Fluorophor soll bei {\"A}nderung seiner lokalen Umgebung, durch Binden eines L{\"o}schers oder {\"A}nderung seiner L{\"o}semittelumgebung seine Fluoreszenzeigenschaften drastisch {\"a}ndern. 5. Die Reaktion sollte schnell und mit m{\"o}glichst geringem apparativem Aufwand, am besten mit bloßem Auge zu verfolgen sein. F{\"u}r das ß-CD/Adamantan Modellsystem wurde ein Fluoreszenz Aus/An Sensor entwickelt, der bei Binden ß CD funktionalisierter Goldnanopartikel an das polymergebundene Adamantan die Fluoreszenz des RhodaminB Fluorophors effizient l{\"o}scht und bei Verdr{\"a}ngung der Goldnanopartikel wieder zur{\"u}ck gewinnt. Dies konnte auch mit bloßem Auge verfolgt werden. F{\"u}r die Naphthals{\"a}ureimid Monomere, die mit NVCL copolymerisiert wurden, wurde abh{\"a}ngig von der lokalen Umgebung des Fluorophors eine unterschiedliche Verst{\"a}rkung der Fluoreszenzintensit{\"a}t bei {\"U}berschreiten des Tr{\"u}bungspunktes des Polymers gefunden. Dabei zeigte sich, dass die Einf{\"u}hrung eines Abstandshalters zwischen Polymerr{\"u}ckgrat und Fluorophor zu einer großen Fluoreszenz¬verst{\"a}rkung f{\"u}hrt, w{\"a}hrend sich ohne Abstandshalter die Fluoreszenzintensit{\"a}t bei {\"U}ber¬schreiten des Tr{\"u}bungspunktes kaum {\"a}ndert.}, language = {de} } @phdthesis{Miasnikova2012, author = {Miasnikova, Anna}, title = {New hydrogel forming thermo-responsive block copolymers of increasing structural complexity}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-59953}, school = {Universit{\"a}t Potsdam}, year = {2012}, abstract = {This work describes the synthesis and characterization of stimuli-responsive polymers made by reversible addition-fragmentation chain transfer (RAFT) polymerization and the investigation of their self-assembly into "smart" hydrogels. In particular the hydrogels were designed to swell at low temperature and could be reversibly switched to a collapsed hydrophobic state by rising the temperature. Starting from two constituents, a short permanently hydrophobic polystyrene (PS) block and a thermo-responsive poly(methoxy diethylene glycol acrylate) (PMDEGA) block, various gelation behaviors and switching temperatures were achieved. New RAFT agents bearing tert-butyl benzoate or benzoic acid groups, were developed for the synthesis of diblock, symmetrical triblock and 3-arm star block copolymers. Thus, specific end groups were attached to the polymers that facilitate efficient macromolecular characterization, e.g by routine 1H-NMR spectroscopy. Further, the carboxyl end-groups allowed functionalizing the various polymers by a fluorophore. Because reports on PMDEGA have been extremely rare, at first, the thermo-responsive behavior of the polymer was investigated and the influence of factors such as molar mass, nature of the end-groups, and architecture, was studied. The use of special RAFT agents enabled the design of polymer with specific hydrophobic and hydrophilic end-groups. Cloud points (CP) of the polymers proved to be sensitive to all molecular variables studied, namely molar mass, nature and number of the end-groups, up to relatively high molar masses. Thus, by changing molecular parameters, CPs of the PMDEGA could be easily adjusted within the physiological interesting range of 20 to 40°C. A second responsivity, namely to light, was added to the PMDEGA system via random copolymerization of MDEGA with a specifically designed photo-switchable azobenzene acrylate. The composition of the copolymers was varied in order to determine the optimal conditions for an isothermal cloud point variation triggered by light. Though reversible light-induced solubility changes were achieved, the differences between the cloud points before and after the irradiation were small. Remarkably, the response to light differed from common observations for azobenzene-based systems, as CPs decreased after UV-irradiation, i.e with increasing content of cis-azobenzene units. The viscosifying and gelling abilities of the various block copolymers made from PS and PMDEGA blocks were studied by rheology. Important differences were observed between diblock copolymers, containing one hydrophobic PS block only, the telechelic symmetrical triblock copolymers made of two associating PS termini, and the star block copolymers having three associating end blocks. Regardless of their hydrophilic block length, diblock copolymers PS11 PMDEGAn were freely flowing even at concentrations as high as 40 wt. \%. In contrast, all studied symmetrical triblock copolymers PS8-PMDEGAn-PS8 formed gels at low temperatures and at concentrations as low as 3.5 wt. \% at best. When heated, these gels underwent a gel-sol transition at intermediate temperatures, well below the cloud point where phase separation occurs. The gel-sol transition shifted to markedly higher transition temperatures with increasing length of the hydrophilic inner block. This effect increased also with the number of arms, and with the length of the hydrophobic end blocks. The mechanical properties of the gels were significantly altered at the cloud point and liquid-like dispersions were formed. These could be reversibly transformed into hydrogels by cooling. This thesis demonstrates that high molar mass PMDEGA is an easily accessible, presumably also biocompatible and at ambient temperature well water-soluble, non-ionic thermo-responsive polymer. PMDEGA can be easily molecularly engineered via the RAFT method, implementing defined end-groups, and producing different, also complex, architectures, such as amphiphilic triblock and star block copolymers, having an analogous structure to associative telechelics. With appropriate design, such amphiphilic copolymers give way to efficient, "smart" viscosifiers and gelators displaying tunable gelling and mechanical properties.}, language = {en} } @phdthesis{Hechenbichler2021, author = {Hechenbichler, Michelle}, title = {New thermoresponsive amphiphilic block copolymers with unconventional chemical structure and architecture}, doi = {10.25932/publishup-54182}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-541822}, school = {Universit{\"a}t Potsdam}, pages = {XIX, 186}, year = {2021}, abstract = {Das Aggregationsverhalten von amphiphilen Blockcpoolymeren ist wichtig f{\"u}r zahlreiche Anwendungen, beispielsweise in der Waschmittelindustrie als Verdicker oder in der Pharmazie zur kontrollierten Freisetzung von Wirkstoffen. Wenn einer der Bl{\"o}cke thermoresponsiv ist, kann das Aggregationsverhalten zus{\"a}tzlich {\"u}ber die Temperatur gesteuert werden. W{\"a}hrend sich die bisherigen Untersuchungen solcher „intelligenten" Systeme zumeist auf einfache Diblockcopolymere beschr{\"a}nkt haben, wurde in der vorliegenden Arbeit die Komplexit{\"a}t der Polymere und damit die Vielseitigkeit dieser Systeme erh{\"o}ht. Dazu wurden spezifische Monomere, verschiedene Blockl{\"a}ngen, unterschiedliche Architekturen und zus{\"a}tzliche funktionelle Gruppen eingef{\"u}hrt. Durch systematische {\"A}nderungen wurde das Struktur-Wirkungsverhalten solcher thermoresponsiver amphiphiler Blockcopolymere untersucht. Dabei sind die Blockcopolymere typischerweise aus einem permanent hydrophoben „Sticker", einem permanent hydrophilen Block sowie einem thermoresponsiven Block, der ein Lower Critical Solution Temperature (LCST) Verhalten zeigt, aufgebaut. W{\"a}hrend der permanent hydrophile Block aus N,N Dimethylacrylamid (DMAm) bestand, wurden f{\"u}r den thermoresponsiven Block unterschiedliche Monomere, n{\"a}mlich N n Propylacrylamid (NPAm), N iso Propylacrylamid (NiPAm), N,N Diethylacrylamid (DEAm), N,N Bis(2 methoxyethyl)acrylamid (bMOEAm), oder N Acryloylpyrrolidin (NAP) mit entsprechend unterschiedlichen LCSTs von 25, 32, 33, 42 und 56 °C verwendet. Die Blockcopolymere wurden mittels aufeinanderfolgender reversibler Additions-Fragmentierungs-Ketten{\"u}bertragungspolymerisation (RAFT Polymerisation) hergestellt, um Polymere mit linearer, doppelt hydrophober sowie symmetrischer Quasi Miktoarm Architektur zu erhalten. Dabei wurden wohldefinierte Blockgr{\"o}ßen, Endgruppen und enge Molmassenverteilungen (Ɖ ≤ 1.3) erzielt. F{\"u}r komplexere Architekturen, wie die doppelt thermoresponsive und die nicht symmetrische Quasi Miktoarm Architekturen, wurde RAFT mit Atomtransfer-Radikalpolymerisation (ATRP) oder Single Unit Monomer Insertion (SUMI), kombiniert. Die dabei erhaltenen Blockcopolymere hatten ebenfalls wohldefinierte Blockl{\"a}ngen, allerdings war die Molmassenverteilung generell breiter (Ɖ ≤ 1.8) und Endgruppen gingen zum Teil verloren, da komplexere Syntheseschritte n{\"o}tig waren. Das thermoresponsive Verhalten in w{\"a}ssriger L{\"o}sung wurde mittels Tr{\"u}bungspunktmessung und Dynamischer Lichtstreuung (DLS) untersucht. Unterhalb der Phasen{\"u}berganstemperatur waren die Polymere l{\"o}slich in Wasser und mizellare Strukturen waren in der DLS sichtbar. Oberhalb der Phasen{\"u}bergangstemperatur war das Aggregationsverhalten dann stark abh{\"a}ngig von der Architektur und der chemischen Struktur des thermoresponsiven Blocks. Thermoresponsive Bl{\"o}cke aus PNAP und PbMOEAm mit einer Blockl{\"a}nge von DPn = 40 zeigten keinen Tr{\"u}bungspunkt (CP) bis hin zu 80 °C, da durch den angebrachten hydrophilen PDMAm Block die bereits hohe LCST der entsprechenden Homopolymere bei den Blockcopolymeren weiter erh{\"o}ht wurde. Blockcopolymere mit PNiPAm, PDEAm und PNPAm hinggeen zeigten abh{\"a}ngig von der Architektur und Blockgr{\"o}ße unterschiedliche CP's. Oberhalb der CP's waren gr{\"o}ßere Aggregate vor allem f{\"u}r die Blockcopolymere mit PNiPAm und PDEAm sichtbar, wohingegen der Phasen{\"u}bergang f{\"u}r Blockcopolymere mit PNPAm stark abh{\"a}ngig von der jeweiligen Architektur war und entsprechend kleinere oder gr{\"o}ßere Aggregate zeigte. Um das Aggregationsverhalten besser zu verstehen, wurden Fluoreszenzstudien an PDMAm und PNiPAm Homo und Blockcopolymeren mit linearer Architektur durchgef{\"u}hrt, welche mit komplement{\"a}ren Fluoreszenzfarbstoffen an den entgegengesetzten Kettenenden funktionalisiert wurden. Das thermoresponsive Verhalten wurde dabei sowohl in Wasser als auch in {\"O}l-in-Wasser Mikroemulsion untersucht. Die Ergebnisse zeigten, dass das Blockcopolymer sich, {\"a}hnlich wie die anderen hergestellten Architekturen, bei niedrigen Temperaturen wie ein Polymertensid verh{\"a}lt. Dabei bilden die hydrophoben Stickergruppen den Kern und die hydrophilen Arme die Corona der Mizelle. Oberhalb des Phasen{\"u}bergangs des PNiPAm Blocks verhielten sich die Blockcopolymere allerdings wie assoziative Telechele mit zwei nicht symmetrischen hydrophoben Endgruppen, die sich untereinander nicht mischten. Daher bildeten die Blockcopolymere anstatt aggregierter „Blumen"-Mizellen gr{\"o}ßere, dynamische Aggregate. Diese sind einerseits {\"u}ber die urspr{\"u}nglichen Mizellkerne bestehend aus den hydrophoben Sticker als auch {\"u}ber Cluster der kollabierten thermoresponsiven Bl{\"o}cke miteinander verkn{\"u}pft. In Mikroemulsion ist diese Art der Netzwerkbildung noch st{\"a}rker ausgepr{\"a}gt.}, language = {en} } @phdthesis{Niedl2015, author = {Niedl, Robert Raimund}, title = {Nichtlineare Kinetik und responsive Hydrogele f{\"u}r papierbasierte Schnelltestanwendungen}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-77735}, school = {Universit{\"a}t Potsdam}, pages = {iv, 128}, year = {2015}, abstract = {Viele klinische Schnelltestsysteme ben{\"o}tigen vorpr{\"a}parierte oder aufgereinigte Analyte mit frisch hergestellten L{\"o}sungen. Fernab standardisierter Laborbedingungen wie z.B. in Entwicklungsl{\"a}ndern oder Krisengebieten sind solche Voraussetzungen oft nur unter einem hohen Aufwand herstellbar. Zus{\"a}tzlich stellt die erforderliche Sensitivit{\"a}t die Entwicklung einfach zu handhabender Testsysteme vor große Herausforderungen. Autokatalytische Reaktionen, die sich mit Hilfe sehr geringer Initiatorkonzentrationen ausl{\"o}sen lassen, k{\"o}nnen hier eine Perspektive f{\"u}r Signalverst{\"a}rkungsprozesse bieten. Aus diesem Grund wird im ersten Teil der vorliegenden Arbeit das Verhalten der autokatalytischen Arsenit-Jodat-Reaktion in einem mikrofluidischen Kanal untersucht. Dabei werden insbesondere die diffusiven und konvektiven Einfl{\"u}sse auf die Reaktionskinetik im Vergleich zu makroskopischen Volumenmengen betrachtet. Im zweiten Teil werden thermoresponsive Hydrogele mit einem kanalstrukturierten Papiernetzwerk zu einem neuartigen, kapillargetriebenen, extern steuerbaren Mikrofluidik-System kombiniert. Das hier vorgestellte Konzept durch Hydrogele ein papierbasiertes LOC-System zu steuern, erm{\"o}glicht zuk{\"u}nftig die Herstellung von komplexeren, steuerbaren Point-Of-Care Testsystemen (POCT). Durch z.B. einen thermischen Stimulus, wird das L{\"o}sungsverhalten eines Hydrogels so ver{\"a}ndert, dass die gespeicherte Fl{\"u}ssigkeit freigesetzt und durch die Kapillarkraft des Papierkanals ins System transportiert wird. Die Eigenschaften dieses Gelnetzwerks k{\"o}nnen dabei so eingestellt werden, dass eine Freisetzung von Fl{\"u}ssigkeiten sogar bei K{\"o}rpertemperatur m{\"o}glich w{\"a}re und damit eine Anwendung g{\"a}nzlich ohne weitere Hilfsmittel denkbar ist. F{\"u}r die Anwendung notwendige Chemikalien oder Enzyme lassen sich hierbei bequem in getrocknetem Zustand im Papiersubstrat vorlagern und bei Bedarf in L{\"o}sung bringen. Im abschließenden dritten Teil der Arbeit wird ein durch Hydrogele betriebener, Antik{\"o}rper-basierter Mikroorganismenschnelltest f{\"u}r Escherichia coli pr{\"a}sentiert. Dar{\"u}ber hinaus wird weiterf{\"u}hrend eine einfache Methode zur Funktionalisierung eines Hydrogels mit Biomolek{\"u}len {\"u}ber EDC/NHS-Kopplung vorgestellt.}, language = {de} } @phdthesis{Robinson2013, author = {Robinson, Joshua Wayne}, title = {Novel Poly(N-substituted glycine)s : synthesis, post-modification, and physical properties}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-64789}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {Various synthetic approaches were explored towards the preparation of poly(N-substituted glycine) homo/co-polymers (a.k.a. polypeptoids). In particular, monomers that would facilitate in the preparation of bio-relevant polymers via either chain- or step-growth polymerization were targeted. A 3-step synthetic approach towards N-substituted glycine N-carboxyanhydrides (NNCA) was implemented, or developed, and optimized allowing for an efficient gram scale preparation of the aforementioned monomer (chain-growth). After exploring several solvents and various conditions, a reproducible and efficient ring-opening polymerization (ROP) of NNCAs was developed in benzonitrile (PhCN). However, achieving molecular weights greater than 7 kDa required longer reaction times (>4 weeks) and sub-sequentially allowed for undesirable competing side reactions to occur (eg. zwitterion monomer mechanisms). A bulk-polymerization strategy provided molecular weights up to 11 kDa within 24 hours but suffered from low monomer conversions (ca. 25\%). Likewise, a preliminary study towards alcohol promoted ROP of NNCAs suffered from impurities and a suspected alternative activated monomer mechanism (AAMM) providing poor inclusion of the initiator and leading to multi-modal dispersed polymeric systems. The post-modification of poly(N-allyl glycine) via thiol-ene photo-addition was observed to be quantitative, with the utilization of photo-initiators, and facilitated in the first glyco-peptoid prepared under environmentally benign conditions. Furthermore, poly(N-allyl glycine) demonstrated thermo-responsive behavior and could be prepared as a semi-crystalline bio-relevant polymer from solution (ie. annealing). Initial efforts in preparing these polymers via standard poly-condensation protocols were insufficient (step-growth). However, a thermally induced side-product, diallyl diketopiperazine (DKP), afforded the opportunity to explore photo-induced thiol-ene and acyclic diene metathesis (ADMET) polymerizations. Thiol-ene polymerization readily led to low molecular weight polymers (<2.5 kDa), that were insoluble in most solvents except heated amide solvents (ie. DMF), whereas ADMET polymerization, with diallyl DKP, was unsuccessful due to a suspected 6 member complexation/deactivation state of the catalyst. This understanding prompted the preparation of elongated DKPs most notably dibutenyl DKP. SEC data supports the aforementioned understanding but requires further optimization studies in both the preparation of the DKP monomers and following ADMET polymerization. This work was supported by NMR, GC-MS, FT-IR, SEC-IR, and MALDI-Tof MS characterization. Polymer properties were measured by UV-Vis, TGA, and DSC.}, language = {en} } @phdthesis{Weiss2011, author = {Weiß, Jan}, title = {Synthesis and self-assembly of multiple thermoresponsive amphiphilic block copolymers}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-53360}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {In the present thesis, the self-assembly of multi thermoresponsive block copolymers in dilute aqueous solution was investigated by a combination of turbidimetry, dynamic light scattering, TEM measurements, NMR as well as fluorescence spectroscopy. The successive conversion of such block copolymers from a hydrophilic into a hydrophobic state includes intermediate amphiphilic states with a variable hydrophilic-to-lipophilic balance. As a result, the self-organization is not following an all-or-none principle but a multistep aggregation in dilute solution was observed. The synthesis of double thermoresponsive diblock copolymers as well as triple thermoresponsive triblock copolymers was realized using twofold-TMS labeled RAFT agents which provide direct information about the average molar mass as well as residual end group functionality from a routine proton NMR spectrum. First a set of double thermosensitive diblock copolymers poly(N-n-propylacrylamide)-b-poly(N-ethylacrylamide) was synthesized which differed only in the relative size of the two blocks. Depending on the relative block lengths, different aggregation pathways were found. Furthermore, the complementary TMS-labeled end groups served as NMR-probes for the self-assembly of these diblock copolymers in dilute solution. Reversible, temperature sensitive peak splitting of the TMS-signals in NMR spectroscopy was indicative for the formation of mixed star-/flower-like micelles in some cases. Moreover, triple thermoresponsive triblock copolymers from poly(N-n-propylacrylamide) (A), poly(methoxydiethylene glycol acrylate) (B) and poly(N-ethylacrylamide) (C) were obtained from sequential RAFT polymerization in all possible block sequences (ABC, BAC, ACB). Their self-organization behavior in dilute aqueous solution was found to be rather complex and dependent on the positioning of the different blocks within the terpolymers. Especially the localization of the low-LCST block (A) had a large influence on the aggregation behavior. Above the first cloud point, aggregates were only observed when the A block was located at one terminus. Once placed in the middle, unimolecular micelles were observed which showed aggregation only above the second phase transition temperature of the B block. Carrier abilities of such triple thermosensitive triblock copolymers tested in fluorescence spectroscopy, using the solvatochromic dye Nile Red, suggested that the hydrophobic probe is less efficiently incorporated by the polymer with the BAC sequence as compared to ABC or ACB polymers above the first phase transition temperature. In addition, due to the problem of increasing loss of end group functionality during the subsequent polymerization steps, a novel concept for the one-step synthesis of multi thermoresponsive block copolymers was developed. This allowed to synthesize double thermoresponsive di- and triblock copolymers in a single polymerization step. The copolymerization of different N-substituted maleimides with a thermosensitive styrene derivative (4-vinylbenzyl methoxytetrakis(oxyethylene) ether) led to alternating copolymers with variable LCST. Consequently, an excess of this styrene-based monomer allowed the synthesis of double thermoresponsive tapered block copolymers in a single polymerization step.}, language = {en} }