@phdthesis{Gentsch2010, author = {Gentsch, Rafael}, title = {Complex bioactive fiber systems by means of electrospinning}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-44900}, school = {Universit{\"a}t Potsdam}, year = {2010}, abstract = {Nanofibrous mats are interesting scaffold materials for biomedical applications like tissue engineering due to their interconnectivity and their size dimension which mimics the native cell environment. Electrospinning provides a simple route to access such fiber meshes. This thesis addresses the structural and functional control of electrospun fiber mats. In the first section, it is shown that fiber meshes with bimodal size distribution could be obtained in a single-step process by electrospinning. A standard single syringe set-up was used to spin concentrated poly(ε-caprolactone) (PCL) and poly(lactic-co-glycolic acid) (PLGA) solutions in chloroform and meshes with bimodal-sized fiber distribution could be directly obtained by reducing the spinning rate at elevated humidity. Scanning electron microscopy (SEM) and mercury porosity of the meshes suggested a suitable pore size distribution for effective cell infiltration. The bimodal fiber meshes together with unimodal fiber meshes were evaluated for cellular infiltration. While the micrometer fibers in the mixed meshes generate an open pore structure, the submicrometer fibers support cell adhesion and facilitate cell bridging on the large pores. This was revealed by initial cell penetration studies, showing superior ingrowth of epithelial cells into the bimodal meshes compared to a mesh composed of unimodal 1.5 μm fibers. The bimodal fiber meshes together with electrospun nano- and microfiber meshes were further used for the inorganic/organic hybrid fabrication of PCL with calcium carbonate or calcium phosphate, two biorelevant minerals. Such composite structures are attractive for the potential improvement of properties such as stiffness or bioactivity. It was possible to encapsulate nano and mixed sized plasma-treated PCL meshes to areas > 1 mm2 with calcium carbonate using three different mineralization methods including the use of poly(acrylic acid). The additive seemed to be useful in stabilizing amorphous calcium carbonate to effectively fill the space between the electrospun fibers resulting in composite structures. Micro-, nano- and mixed sized fiber meshes were successfully coated within hours by fiber directed crystallization of calcium phosphate using a ten-times concentrated simulated body fluid. It was shown that nanofibers accelerated the calcium phosphate crystallization, as compared to microfibers. In addition, crystallizations performed at static conditions led to hydroxyapatite formations whereas in dynamic conditions brushite coexisted. In the second section, nanofiber functionalization strategies are investigated. First, a one-step process was introduced where a peptide-polymer-conjugate (PLLA-b-CGGRGDS) was co-spun with PLGA in such a way that the peptide is enriched on the surface. It was shown that by adding methanol to the chloroform/blend solution, a dramatic increase of the peptide concentration at the fiber surface could be achieved as determined by X-ray photoelectron spectroscopy (XPS). Peptide accessibility was demonstrated via a contact angle comparison of pure PLGA and RGD-functionalized fiber meshes. In addition, the electrostatic attraction between a RGD-functionalized fiber and a silica bead at pH ~ 4 confirmed the accessibility of the peptide. The bioactivity of these RGD-functionalized fiber meshes was demonstrated using blends containing 18 wt\% bioconjugate. These meshes promoted adhesion behavior of fibroblast compared to pure PLGA meshes. In a second functionalization approach, a modular strategy was investigated. In a single step, reactive fiber meshes were fabricated and then functionalized with bioactive molecules. While the electrospinning of the pure reactive polymer poly(pentafluorophenyl methacrylate) (PPFPMA) was feasible, the inherent brittleness of PPFPMA required to spin a PCL blend. Blends and pure PPFPMA showed a two-step functionalization kinetics. An initial fast reaction of the pentafluorophenyl esters with aminoethanol as a model substance was followed by a slow conversion upon further hydrophilization. This was analysed by UV/Vis-spectroscopy of the pentaflurorophenol release upon nucleophilic substitution with the amines. The conversion was confirmed by increased hydrophilicity of the resulting meshes. The PCL/PPFPMA fiber meshes were then used for functionalization with more complex molecules such as saccharides. Aminofunctionalized D-Mannose or D-Galactose was reacted with the active pentafluorophenyl esters as followed by UV/Vis spectroscopy and XPS. The functionality was shown to be bioactive using macrophage cell culture. The meshes functionalized with D-Mannose specifically stimulated the cytokine production of macrophages when lipopolysaccharides were added. This was in contrast to D-Galactose- or aminoethanol-functionalized and unfunctionalized PCL/PPFPMA fiber mats.}, language = {en} } @article{WillmannHeniLinderetal.2019, author = {Willmann, Caroline and Heni, Martin and Linder, Katarzyna and Wagner, Robert and Stefan, Norbert and Machann, J{\"u}rgen and Schulze, Matthias Bernd and Joost, Hans-Georg and Haring, Hans-Ulrich and Fritsche, Andreas}, title = {Potential effects of reduced red meat compared with increased fiber intake on glucose metabolism and liver fat content}, series = {The American journal of clinical nutrition : a publication of the American Society for Nutrition, Inc.}, volume = {109}, journal = {The American journal of clinical nutrition : a publication of the American Society for Nutrition, Inc.}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0002-9165}, doi = {10.1093/ajcn/nqy307}, pages = {288 -- 296}, year = {2019}, abstract = {Background: Epidemiological studies suggest that an increased red meat intake is associated with a higher risk of type 2 diabetes, whereas an increased fiber intake is associated with a lower risk. Objectives: We conducted an intervention study to investigate the effects of these nutritional factors on glucose and lipid metabolism, body-fat distribution, and liver fat content in subjects at increased risk of type 2 diabetes. Methods: This prospective, randomized, and controlled dietary intervention study was performed over 6 mo. All groups decreased their daily caloric intake by 400 kcal. The "control" group (N = 40) only had this requirement. The "no red meat" group (N = 48) in addition aimed to avoid the intake of red meat, and the "fiber" group (N = 44) increased intake of fibers to 40 g/d. Anthropometric parameters and frequently sampled oral glucose tolerance tests were performed before and after intervention. Body-fat mass and distribution, liver fat, and liver iron content were assessed by MRI and single voxel proton magnetic resonance spectroscopy. Results: Participants in all groups lost weight (mean 3.3 +/- 0.5 kg, P < 0.0001). Glucose tolerance and insulin sensitivity improved (P < 0.001), and body and visceral fat mass decreased in all groups (P < 0.001). These changes did not differ between groups. Liver fat content decreased significantly (P < 0.001) with no differences between the groups. The decrease in liver fat correlated with the decrease in ferritin during intervention (r(2) = 0.08, P = 0.0021). This association was confirmed in an independent lifestyle intervention study (Tuebingen Lifestyle Intervention Program, N = 229, P = 0.0084). Conclusions: Our data indicate that caloric restriction leads to a marked improvement in glucose metabolism and body-fat composition, including liver-fat content. The marked reduction in liver fat might be mediated via changes in ferritin levels. In the context of caloric restriction, there seems to be no additional beneficial impact of reduced red meat intake and increased fiber intake on the improvement in cardiometabolic risk parameters. This trial was registered at clinicaltrials.gov as NCT03231839.}, language = {en} }