@article{AlluSojaWuetal.2014, author = {Allu, Annapurna Devi and Soja, Aleksandra Maria and Wu, Anhui and Szymanski, Jedrzej and Balazadeh, Salma}, title = {Salt stress and senescence: identification of cross-talk regulatory components}, series = {Journal of experimental botany}, volume = {65}, journal = {Journal of experimental botany}, number = {14}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0022-0957}, doi = {10.1093/jxb/eru173}, pages = {3993 -- 4008}, year = {2014}, abstract = {Leaf senescence is an active process with a pivotal impact on plant productivity. It results from extensive signalling cross-talk coordinating environmental factors with intrinsic age-related mechanisms. Although many studies have shown that leaf senescence is affected by a range of external parameters, knowledge about the regulatory systems that govern the interplay between developmental programmes and environmental stress is still vague. Salinity is one of the most important environmental stresses that promote leaf senescence and thus affect crop yield. Improving salt tolerance by avoiding or delaying senescence under stress will therefore play an important role in maintaining high agricultural productivity. Experimental evidence suggests that hydrogen peroxide (H2O2) functions as a common signalling molecule in both developmental and salt-induced leaf senescence. In this study, microarray-based gene expression profiling on Arabidopsis thaliana plants subjected to long-term salinity stress to induce leaf senescence was performed, together with co-expression network analysis for H2O2-responsive genes that are mutually up-regulated by salt induced-and developmental leaf senescence. Promoter analysis of tightly co-expressed genes led to the identification of seven cis-regulatory motifs, three of which were known previously, namely CACGTGT and AAGTCAA, which are associated with reactive oxygen species (ROS)-responsive genes, and CCGCGT, described as a stress-responsive regulatory motif, while the others, namely ACGCGGT, AGCMGNC, GMCACGT, and TCSTYGACG were not characterized previously. These motifs are proposed to be novel elements involved in the H2O2-mediated control of gene expression during salinity stress-triggered and developmental senescence, acting through upstream transcription factors that bind to these sites.}, language = {en} } @article{BalazadehSchildhauerAraujoetal.2014, author = {Balazadeh, Salma and Schildhauer, Joerg and Araujo, Wagner L. and Munne-Bosch, Sergi and Fernie, Alisdair R. and Proost, Sebastian and Humbeck, Klaus and M{\"u}ller-R{\"o}ber, Bernd}, title = {Reversal of senescence by N resupply to N-starved Arabidopsis thaliana: transcriptomic and metabolomic consequences}, series = {Journal of experimental botany}, volume = {65}, journal = {Journal of experimental botany}, number = {14}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0022-0957}, doi = {10.1093/jxb/eru119}, pages = {3975 -- 3992}, year = {2014}, abstract = {Leaf senescence is a developmentally controlled process, which is additionally modulated by a number of adverse environmental conditions. Nitrogen shortage is a well-known trigger of precocious senescence in many plant species including crops, generally limiting biomass and seed yield. However, leaf senescence induced by nitrogen starvation may be reversed when nitrogen is resupplied at the onset of senescence. Here, the transcriptomic, hormonal, and global metabolic rearrangements occurring during nitrogen resupply-induced reversal of senescence in Arabidopsis thaliana were analysed. The changes induced by senescence were essentially in keeping with those previously described; however, these could, by and large, be reversed. The data thus indicate that plants undergoing senescence retain the capacity to sense and respond to the availability of nitrogen nutrition. The combined data are discussed in the context of the reversibility of the senescence programme and the evolutionary benefit afforded thereby. Future prospects for understanding and manipulating this process in both Arabidopsis and crop plants are postulated.}, language = {en} } @article{BoginVareaHermanussenetal.2018, author = {Bogin, Barry and Varea, Carlos and Hermanussen, Michael and Scheffler, Christiane}, title = {Human life course biology}, series = {American journal of physical anthropology}, volume = {165}, journal = {American journal of physical anthropology}, number = {4}, publisher = {Wiley}, address = {Hoboken}, issn = {0002-9483}, doi = {10.1002/ajpa.23357}, pages = {834 -- 854}, year = {2018}, language = {en} } @article{KamranfarXueTohgeetal.2018, author = {Kamranfar, Iman and Xue, Gang-Ping and Tohge, Takayuki and Sedaghatmehr, Mastoureh and Fernie, Alisdair R. and Balazadeh, Salma and Mueller-Roeber, Bernd}, title = {Transcription factor RD26 is a key regulator of metabolic reprogramming during dark-induced senescence}, series = {New phytologist : international journal of plant science}, volume = {218}, journal = {New phytologist : international journal of plant science}, number = {4}, publisher = {Wiley}, address = {Hoboken}, issn = {0028-646X}, doi = {10.1111/nph.15127}, pages = {1543 -- 1557}, year = {2018}, abstract = {Leaf senescence is a key process in plants that culminates in the degradation of cellular constituents and massive reprogramming of metabolism for the recovery of nutrients from aged leaves for their reuse in newly developing sinks. We used molecular-biological and metabolomics approaches to identify NAC transcription factor (TF) RD26 as an important regulator of metabolic reprogramming in Arabidopsis thaliana. RD26 directly activates CHLOROPLAST VESICULATION (CV), encoding a protein crucial for chloroplast protein degradation, concomitant with an enhanced protein loss in RD26 over-expressors during senescence, but a reduced decline of protein in rd26 knockout mutants. RD26 also directly activates LKR/SDH involved in lysine catabolism, and PES1 important for phytol degradation. Metabolic profiling revealed reduced c-aminobutyric acid (GABA) in RD26 overexpressors, accompanied by the induction of respective catabolic genes. Degradation of lysine, phytol and GABA is instrumental for maintaining mitochondrial respiration in carbon-limiting conditions during senescence. RD26 also supports the degradation of starch and the accumulation of mono-and disaccharides during senescence by directly enhancing the expression of AMY1, SFP1 and SWEET15 involved in carbohydrate metabolism and transport. Collectively, during senescence RD26 acts by controlling the expression of genes across the entire spectrum of the cellular degradation hierarchy.}, language = {en} } @article{MaBalazadehMuellerRoeber2019, author = {Ma, Xuemin and Balazadeh, Salma and Mueller-Roeber, Bernd}, title = {Tomato fruit ripening factor NOR controls leaf senescence}, series = {Journal of experimental botany}, volume = {70}, journal = {Journal of experimental botany}, number = {10}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0022-0957}, doi = {10.1093/jxb/erz098}, pages = {2727 -- 2740}, year = {2019}, abstract = {NAC transcription factors (TFs) are important regulators of expressional reprogramming during plant development, stress responses, and leaf senescence. NAC TFs also play important roles in fruit ripening. In tomato (Solanum lycopersicum), one of the best characterized NACs involved in fruit ripening is NON-RIPENING (NOR), and the non-ripening (nor) mutation has been widely used to extend fruit shelf life in elite varieties. Here, we show that NOR additionally controls leaf senescence. Expression of NOR increases with leaf age, and developmental as well as dark-induced senescence are delayed in the nor mutant, while overexpression of NOR promotes leaf senescence. Genes associated with chlorophyll degradation as well as senescence-associated genes (SAGs) show reduced and elevated expression, respectively, in nor mutants and NOR overexpressors. Overexpression of NOR also stimulates leaf senescence in Arabidopsis thaliana. In tomato, NOR supports senescence by directly and positively regulating the expression of several senescence-associated genes including, besides others, SlSAG15 and SlSAG113, SlSGR1, and SlYLS4. Finally, we find that another senescence control NAC TF, namely SlNAP2, acts upstream of NOR to regulate its expression. Our data support a model whereby NAC TFs have often been recruited by higher plants for both the control of leaf senescence and fruit ripening.}, language = {en} } @article{MatallanaRamirezRaufFarageBarhometal.2013, author = {Matallana-Ramirez, Lilian P. and Rauf, Mamoona and Farage-Barhom, Sarit and Dortay, Hakan and Xue, Gang-Ping and Droege-Laser, Wolfgang and Lers, Amnon and Balazadeh, Salma and M{\"u}ller-R{\"o}ber, Bernd}, title = {NAC Transcription Factor ORE1 and Senescence-Induced BIFUNCTIONAL NUCLEASE1 (BFN1) Constitute a Regulatory Cascade in Arabidopsis}, series = {Molecular plant}, volume = {6}, journal = {Molecular plant}, number = {5}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {1674-2052}, doi = {10.1093/mp/sst012}, pages = {1438 -- 1452}, year = {2013}, abstract = {The NAC transcription factor ORE1 is a key regulator of senescence in Arabidopsis thaliana. Here, we demonstrate that senescence-induced and cell death-associated BIFUNCTIONAL NUCLEASE1 (BFN1) is a direct downstream target of ORE1, revealing a previously unknown regulatory cascade.Senescence is a highly regulated process that involves the action of a large number of transcription factors. The NAC transcription factor ORE1 (ANAC092) has recently been shown to play a critical role in positively controlling senescence in Arabidopsis thaliana; however, no direct target gene through which it exerts its molecular function has been identified previously. Here, we report that BIFUNCTIONAL NUCLEASE1 (BFN1), a well-known senescence-enhanced gene, is directly regulated by ORE1. We detected elevated expression of BFN1 already 2 h after induction of ORE1 in estradiol-inducible ORE1 overexpression lines and 6 h after transfection of Arabidopsis mesophyll cell protoplasts with a 35S:ORE1 construct. ORE1 and BFN1 expression patterns largely overlap, as shown by promoterreporter gene (GUS) fusions, while BFN1 expression in senescent leaves and the abscission zones of maturing flower organs was virtually absent in ore1 mutant background. In vitro binding site assays revealed a bipartite ORE1 binding site, similar to that of ORS1, a paralog of ORE1. A bipartite ORE1 binding site was identified in the BFN1 promoter; mutating the cis-element within the context of the full-length BFN1 promoter drastically reduced ORE1-mediated transactivation capacity in transiently transfected Arabidopsis mesophyll cell protoplasts. Furthermore, chromatin immunoprecipitation (ChIP) demonstrates in vivo binding of ORE1 to the BFN1 promoter. We also demonstrate binding of ORE1 in vivo to the promoters of two other senescence-associated genes, namely SAG29/SWEET15 and SINA1, supporting the central role of ORE1 during senescence.}, language = {en} } @article{RaufArifDortayetal.2013, author = {Rauf, Mamoona and Arif, Muhammad and Dortay, Hakan and Matallana-Ramirez, Lilian P. and Waters, Mark T. and Nam, Hong Gil and Lim, Pyung-Ok and M{\"u}ller-R{\"o}ber, Bernd and Balazadeh, Salma}, title = {ORE1 balances leaf senescence against maintenance by antagonizing G2-like-mediated transcription}, series = {EMBO reports}, volume = {14}, journal = {EMBO reports}, number = {4}, publisher = {Nature Publ. Group}, address = {London}, issn = {1469-221X}, doi = {10.1038/embor.2013.24}, pages = {382 -- 388}, year = {2013}, abstract = {Leaf senescence is a key physiological process in all plants. Its onset is tightly controlled by transcription factors, of which NAC factor ORE1 (ANAC092) is crucial in Arabidopsis thaliana. Enhanced expression of ORE1 triggers early senescence by controlling a downstream gene network that includes various senescence-associated genes. Here, we report that unexpectedly ORE1 interacts with the G2-like transcription factors GLK1 and GLK2, which are important for chloroplast development and maintenance, and thereby for leaf maintenance. ORE1 antagonizes GLK transcriptional activity, shifting the balance from chloroplast maintenance towards deterioration. Our finding identifies a new mechanism important for the control of senescence by ORE1.}, language = {en} } @misc{SadowskaHausmannWuertzKozak2018, author = {Sadowska, Aleksandra and Hausmann, Oliver Nic and Wuertz-Kozak, Karin}, title = {Inflammaging in the intervertebral disc}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {519}, doi = {10.25932/publishup-41408}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-414081}, pages = {9}, year = {2018}, abstract = {Degeneration of the intervertebral disc - triggered by ageing, mechanical stress, traumatic injury, infection, inflammation and other factors - has a significant role in the development of low back pain. Back pain not only has a high prevalence, but also a major socio-economic impact. With the ageing population, its occurrence and costs are expected to grow even more in the future. Disc degeneration is characterized by matrix breakdown, loss in proteoglycans and thus water content, disc height loss and an increase in inflammatory molecules. The accumulation of cytokines, such as interleukin (IL)-1 , IL-8 or tumor necrosis factor (TNF)-, together with age-related immune deficiency, leads to the so-called inflammaging - low-grade, chronic inflammation with a crucial role in pain development. Despite the relevance of these molecular processes, current therapies target symptoms, but not underlying causes. This review describes the biological and biomechanical changes that occur in a degenerated disc, discusses the connection between disc degeneration and inflammaging, highlights factors that enhance the inflammatory processes in disc pathologies and suggests future research avenues.}, language = {en} } @article{SchopperMuhlenbockSorenssonetal.2015, author = {Schopper, S. and Muhlenbock, P. and Sorensson, C. and Hellborg, L. and Lenman, M. and Widell, S. and Fettke, J{\"o}rg and Andreasson, Erik}, title = {Arabidopsis cytosolic alpha-glycan phosphorylase, PHS2, is important during carbohydrate imbalanced conditions}, series = {Plant biology}, volume = {17}, journal = {Plant biology}, number = {1}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1435-8603}, doi = {10.1111/plb.12190}, pages = {74 -- 80}, year = {2015}, abstract = {Arabidopsis thaliana has two isoforms of alpha-glycan phosphorylase (EC 2.4.1.1), one residing in the plastid and the other in the cytosol. The cytosolic phosphorylase, PHS2, acts on soluble heteroglycans that constitute a part of the carbohydrate pool in a plant. This study aimed to define a physiological role for PHS2. Under standard growth conditions phs2 knock-out mutants do not show any clear growth phenotype, and we hypothesised that during low-light conditions where carbohydrate imbalance is perturbed, this enzyme is important. Soil-grown phs2 mutant plants developed leaf lesions when placed in very low light. Analysis of soluble heteroglycan (SHG) levels showed that the amount of glucose residues in SHG was higher in the phs2 mutant compared to wild-type plants. Furthermore, a standard senescence assay from soil-grown phs2 mutant plants showed that leaves senesced significantly faster in darkness than the wild-type leaves. We also found decreased hypocotyl extension in in vitro-grown phs2 mutant seedlings when grown for long time in darkness at 6 degrees C. We conclude that PHS2 activity is important in the adult stage during low-light conditions and senescence, as well as during prolonged seedling development when carbohydrate levels are unbalanced.}, language = {en} } @phdthesis{Welsch2022, author = {Welsch, Maryna}, title = {Investigation of the stress tolerance regulatory network integration of the NAC transcription factor JUNGBRUNNEN1 (JUB1)}, doi = {10.25932/publishup-54731}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-547310}, school = {Universit{\"a}t Potsdam}, pages = {XIII, 116}, year = {2022}, abstract = {The NAC transcription factor (TF) JUNGBRUNNEN1 (JUB1) is an important negative regulator of plant senescence, as well as of gibberellic acid (GA) and brassinosteroid (BR) biosynthesis in Arabidopsis thaliana. Overexpression of JUB1 promotes longevity and enhances tolerance to drought and other abiotic stresses. A similar role of JUB1 has been observed in other plant species, including tomato and banana. Our data show that JUB1 overexpressors (JUB1-OXs) accumulate higher levels of proline than WT plants under control conditions, during the onset of drought stress, and thereafter. We identified that overexpression of JUB1 induces key proline biosynthesis and suppresses key proline degradation genes. Furthermore, bZIP63, the transcription factor involved in proline metabolism, was identified as a novel downstream target of JUB1 by Yeast One-Hybrid (Y1H) analysis and Chromatin immunoprecipitation (ChIP). However, based on Electrophoretic Mobility Shift Assay (EMSA), direct binding of JUB1 to bZIP63 could not be confirmed. Our data indicate that JUB1-OX plants exhibit reduced stomatal conductance under control conditions. However, selective overexpression of JUB1 in guard cells did not improve drought stress tolerance in Arabidopsis. Moreover, the drought-tolerant phenotype of JUB1 overexpressors does not solely depend on the transcriptional control of the DREB2A gene. Thus, our data suggest that JUB1 confers tolerance to drought stress by regulating multiple components. Until today, none of the previous studies on JUB1´s regulatory network focused on identifying protein-protein interactions. We, therefore, performed a yeast two-hybrid screen (Y2H) which identified several protein interactors of JUB1, two of which are the calcium-binding proteins CaM1 and CaM4. Both proteins interact with JUB1 in the nucleus of Arabidopsis protoplasts. Moreover, JUB1 is expressed with CaM1 and CaM4 under the same conditions. Since CaM1.1 and CaM4.1 encode proteins with identical amino acid sequences, all further experiments were performed with constructs involving the CaM4 coding sequence. Our data show that JUB1 harbors multiple CaM-binding sites, which are localized in both the N-terminal and C-terminal regions of the protein. One of the CaM-binding sites, localized in the DNA-binding domain of JUB1, was identified as a functional CaM-binding site since its mutation strongly reduced the binding of CaM4 to JUB1. Furthermore, JUB1 transactivates expression of the stress-related gene DREB2A in mesophyll cells; this effect is significantly reduced when the calcium-binding protein CaM4 is expressed as well. Overexpression of both genes in Arabidopsis results in early senescence observed through lower chlorophyll content and an enhanced expression of senescence-associated genes (SAGs) when compared with single JUB1 overexpressors. Our data also show that JUB1 and CaM4 proteins interact in senescent leaves, which have increased Ca2+ levels when compared to young leaves. Collectively, our data indicate that JUB1 activity towards its downstream targets is fine-tuned by calcium-binding proteins during leaf senescence.}, language = {en} }