@article{AndreevNazarovaLenzetal.2022, author = {Andreev, Andrei and Nazarova, Larisa B. and Lenz, Marlene M. and B{\"o}hmer, Thomas and Syrykh, Ludmila and Wagner, Bernd and Melles, Martin and Pestryakova, Luidmila A. and Herzschuh, Ulrike}, title = {Late Quaternary paleoenvironmental reconstructions from sediments of Lake Emanda (Verkhoyansk Mountains, East Siberia)}, series = {Journal of quaternary science : JQS}, volume = {37}, journal = {Journal of quaternary science : JQS}, number = {5}, publisher = {Wiley}, address = {New York, NY [u.a.]}, issn = {0267-8179}, doi = {10.1002/jqs.3419}, pages = {884 -- 899}, year = {2022}, abstract = {Continuous pollen and chironomid records from Lake Emanda (65 degrees 17'N, 135 degrees 45'E) provide new insights into the Late Quaternary environmental history of the Yana Highlands (Yakutia). Larch forest with shrubs (alders, pines, birches) dominated during the deposition of the lowermost sediments suggesting its Early Weichselian [Marine Isotope Stage (MIS) 5] age. Pollen- and chironomid-based climate reconstructions suggest July temperatures (T-July) slightly lower than modern. Gradually increasing amounts of herb pollen and cold stenotherm chironomid head capsules reflect cooler and drier environments, probably during the termination of MIS 5. T-July dropped to 8 degrees C. Mostly treeless vegetation is reconstructed during MIS 3. Tundra and steppe communities dominated during MIS 2. Shrubs became common after similar to 14.5 ka BP but herb-dominated habitats remained until the onset of the Holocene. Larch forests with shrub alder and dwarf birch dominated after the Holocene onset, ca. 11.7 ka BP. Decreasing amounts of shrub pollen during the Lateglacial are assigned to the Older Dryas and Younger Dryas with T-July similar to 7.5 degrees C. T-July increased up to 13 degrees C. Shrub stone pine was present after similar to 7.5 ka BP. The vegetation has been similar to modern since ca. 5.8 ka BP. Chironomid diversity and concentration in the sediments increased towards the present day, indicating the development of richer hydrobiological communities in response to the Holocene thermal maximum.}, language = {en} } @article{CaoTianHerzschuhetal.2022, author = {Cao, Xianyong and Tian, Fang and Herzschuh, Ulrike and Ni, Jian and Xu, Qinghai and Li, Wenjia and Zhang, Yanrong and Luo, Mingyu and Chen, Fahu}, title = {Human activities have reduced plant diversity in eastern China over the last two millennia}, series = {Global change biology}, volume = {28}, journal = {Global change biology}, number = {16}, publisher = {Wiley}, address = {Hoboken}, issn = {1354-1013}, doi = {10.1111/gcb.16274}, pages = {4962 -- 4976}, year = {2022}, abstract = {Understanding the history and regional singularities of human impact on vegetation is key to developing strategies for sustainable ecosystem management. In this study, fossil and modern pollen datasets from China are employed to investigate temporal changes in pollen composition, analogue quality, and pollen diversity during the Holocene. Anthropogenic disturbance and vegetation's responses are also assessed. Results reveal that pollen assemblages from non-forest communities fail to provide evidence of human impact for the western part of China (annual precipitation less than 400 mm and/or elevation more than 3000 m.a.s.l.), as inferred from the stable quality of modern analogues, principal components, and diversity of species and communities throughout the Holocene. For the eastern part of China, the proportion of fossil pollen spectra with good modern analogues increases from ca. 50\% to ca. 80\% during the last 2 millennia, indicating an enhanced intensity of anthropogenic disturbance on vegetation. This disturbance has caused the pollen spectra to become taxonomically less diverse over space (reduced abundances of arboreal taxa and increased abundances of herbaceous taxa), highlighting a reduced south-north differentiation and divergence from past vegetation between regions in the eastern part of China. We recommend that care is taken in eastern China when basing the development of ecosystem management strategies on vegetation changes in the region during the last 2000 years, since humans have significantly disturbed the vegetation during this period.}, language = {en} } @article{CourtinAndreevRaschkeetal.2021, author = {Courtin, J{\´e}r{\´e}my and Andreev, Andrei and Raschke, Elena and Bala, Sarah and Biskaborn, Boris and Liu, Sisi and Zimmermann, Heike and Diekmann, Bernhard and Stoof-Leichsenring, Kathleen R. and Pestryakova, Luidmila Agafyevna and Herzschuh, Ulrike}, title = {Vegetation changes in Southeastern Siberia during the late pleistocene and the holocene}, series = {Frontiers in Ecology and Evolution}, volume = {9}, journal = {Frontiers in Ecology and Evolution}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-701X}, doi = {10.3389/fevo.2021.625096}, pages = {18}, year = {2021}, abstract = {Relationships between climate, species composition, and species richness are of particular importance for understanding how boreal ecosystems will respond to ongoing climate change. This study aims to reconstruct changes in terrestrial vegetation composition and taxa richness during the glacial Late Pleistocene and the interglacial Holocene in the sparsely studied southeastern Yakutia (Siberia) by using pollen and sedimentary ancient DNA (sedaDNA) records. Pollen and sedaDNA metabarcoding data using the trnL g and h markers were obtained from a sediment core from Lake Bolshoe Toko. Both proxies were used to reconstruct the vegetation composition, while metabarcoding data were also used to investigate changes in plant taxa richness. The combination of pollen and sedaDNA approaches allows a robust estimation of regional and local past terrestrial vegetation composition around Bolshoe Toko during the last similar to 35,000 years. Both proxies suggest that during the Late Pleistocene, southeastern Siberia was covered by open steppe-tundra dominated by graminoids and forbs with patches of shrubs, confirming that steppe-tundra extended far south in Siberia. Both proxies show disturbance at the transition between the Late Pleistocene and the Holocene suggesting a period with scarce vegetation, changes in the hydrochemical conditions in the lake, and in sedimentation rates. Both proxies document drastic changes in vegetation composition in the early Holocene with an increased number of trees and shrubs and the appearance of new tree taxa in the lake's vicinity. The sedaDNA method suggests that the Late Pleistocene steppe-tundra vegetation supported a higher number of terrestrial plant taxa than the forested Holocene. This could be explained, for example, by the "keystone herbivore" hypothesis, which suggests that Late Pleistocene megaherbivores were able to maintain a high plant diversity. This is discussed in the light of the data with the broadly accepted species-area hypothesis as steppe-tundra covered such an extensive area during the Late Pleistocene.}, language = {en} } @article{CuiLvChenetal.2015, author = {Cui, Xiao and Lv, Yang and Chen, Miaolin and Nikoloski, Zoran and Twell, David and Zhang, Dabing}, title = {Young Genes out of the Male: An Insight from Evolutionary Age Analysis of the Pollen Transcriptome}, series = {Molecular plant}, volume = {8}, journal = {Molecular plant}, number = {6}, publisher = {Cell Press}, address = {Cambridge}, issn = {1674-2052}, doi = {10.1016/j.molp.2014.12.008}, pages = {935 -- 945}, year = {2015}, abstract = {The birth of new genes in genomes is an important evolutionary event. Several studies reveal that new genes in animals tend to be preferentially expressed in male reproductive tissues such as testis (Betran et al., 2002; Begun et al., 2007; Dubruille et al., 2012), and thus an "out of testis' hypothesis for the emergence of new genes has been proposed (Vinckenbosch et al., 2006; Kaessmann, 2010). However, such phenomena have not been examined in plant species. Here, by employing a phylostratigraphic method, we dated the origin of protein-coding genes in rice and Arabidopsis thaliana and observed a number of young genes in both species. These young genes tend to encode short extracellular proteins, which may be involved in rapid evolving processes, such as reproductive barriers, species specification, and antimicrobial processes. Further analysis of transcriptome age indexes across different tissues revealed that male reproductive cells express a phylogenetically younger transcriptome than other plant tissues. Compared with sporophytic tissues, the young transcriptomes of the male gametophyte displayed greater complexity and diversity, which included a higher ratio of anti-sense and inter-genic transcripts, reflecting a pervasive transcription state that facilitated the emergence of new genes. Here, we propose that pollen may act as an "innovation incubator' for the birth of de novo genes. With cases of male-biased expression of young genes reported in animals, the "new genes out of the male' model revealed a common evolutionary force that drives reproductive barriers, species specification, and the upgrading of defensive mechanisms against pathogens.}, language = {en} } @article{GluecklerGengGrimmetal.2022, author = {Gl{\"u}ckler, Ramesh and Geng, Rongwei and Grimm, Lennart and Baisheva, Izabella and Herzschuh, Ulrike and Stoof-Leichsenring, Kathleen R. and Kruse, Stefan and Andreev, Andrej Aleksandrovic and Pestryakova, Luidmila and Dietze, Elisabeth}, title = {Holocene wildfire and vegetation dynamics in Central Yakutia, Siberia, reconstructed from lake-sediment proxies}, series = {Frontiers in Ecology and Evolution}, volume = {10}, journal = {Frontiers in Ecology and Evolution}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-701X}, doi = {10.3389/fevo.2022.962906}, pages = {19}, year = {2022}, abstract = {Wildfires play an essential role in the ecology of boreal forests. In eastern Siberia, fire activity has been increasing in recent years, challenging the livelihoods of local communities. Intensifying fire regimes also increase disturbance pressure on the boreal forests, which currently protect the permafrost beneath from accelerated degradation. However, long-term relationships between changes in fire regime and forest structure remain largely unknown. We assess past fire-vegetation feedbacks using sedimentary proxy records from Lake Satagay, Central Yakutia, Siberia, covering the past c. 10,800 years. Results from macroscopic and microscopic charcoal analyses indicate high amounts of burnt biomass during the Early Holocene, and that the present-day, low-severity surface fire regime has been in place since c. 4,500 years before present. A pollen-based quantitative reconstruction of vegetation cover and a terrestrial plant record based on sedimentary ancient DNA metabarcoding suggest a pronounced shift in forest structure toward the Late Holocene. Whereas the Early Holocene was characterized by postglacial open larch-birch woodlands, forest structure changed toward the modern, mixed larch-dominated closed-canopy forest during the Mid-Holocene. We propose a potential relationship between open woodlands and high amounts of burnt biomass, as well as a mediating effect of dense larch forest on the climate-driven intensification of fire regimes. Considering the anticipated increase in forest disturbances (droughts, insect invasions, and wildfires), higher tree mortality may force the modern state of the forest to shift toward an open woodland state comparable to the Early Holocene. Such a shift in forest structure may result in a positive feedback on currently intensifying wildfires. These new long-term data improve our understanding of millennial-scale fire regime changes and their relationships to changes of vegetation in Central Yakutia, where the local population is already being confronted with intensifying wildfire seasons.}, language = {en} } @misc{GoslingScerriKabothBahr2022, author = {Gosling, William D. and Scerri, Eleanor and Kaboth-Bahr, Stefanie}, title = {The climate and vegetation backdrop to hominin evolution in Africa}, series = {Philosophical transactions of the Royal Society of London : B, Biological sciences}, volume = {377}, journal = {Philosophical transactions of the Royal Society of London : B, Biological sciences}, number = {1849}, publisher = {Royal Society}, address = {London}, issn = {0962-8436}, doi = {10.1098/rstb.2020.0483}, pages = {11}, year = {2022}, abstract = {The most profound shift in the African hydroclimate of the last 1 million years occurred around 300 thousand years (ka) ago. This change in African hydroclimate is manifest as an east-west change in moisture balance that cannot be fully explained through linkages to high latitude climate systems. The east-west shift is, instead, probably driven by a shift in the tropical Walker Circulation related to sea surface temperature change driven by orbital forcing. Comparing records of past vegetation change, and hominin evolution and development, with this breakpoint in the climate system is challenging owing to the paucity of study sites available and uncertainties regarding the dating of records. Notwithstanding these uncertainties we find that, broadly speaking, both vegetation and hominins change around 300 ka. The vegetative backdrop suggests that relative abundance of vegetative resources shifted from western to eastern Africa, although resources would have persisted across the continent. The climatic and vegetation changes probably provided challenges for hominins and are broadly coincident with the appearance of Homo sapiens (ca 315 ka) and the emergence of Middle Stone Age technology. The concomitant changes in climate, vegetation and hominin evolution suggest that these factors are closely intertwined. This article is part of the theme issue 'Tropical forests in the deep human past'.}, language = {en} } @phdthesis{Hahn2002, author = {Hahn, Robert}, title = {Das Bl{\"u}te-Best{\"a}uber-Netz auf Brachfl{\"a}chen : bioz{\"o}nologische Untersuchung zur Bedeutung von Brachen in einer intensiv genutzten Agrarlandschaft}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0000652}, school = {Universit{\"a}t Potsdam}, year = {2002}, abstract = {In der vorliegenden Dissertation wird die Bedeutung von Brachen f{\"u}r Artenvielfalt und Stabilit{\"a}t von Bl{\"u}te-Best{\"a}uber-Nahrungsnetzen in agrarisch genutzten Landschaften anhand ausgew{\"a}hlter bl{\"u}tenbesuchender Insektengruppen (Syrphidae, Lepidoptera) untersucht. Die Freilandarbeiten fanden von 1998-2000 im Raum der Feldberger Seenlandschaft, Mecklenburg-Vorpommern, statt. Es werden die beiden Hauptnahrungsquellen Nektar und Pollen betrachtet, dabei fanden Untersuchungen zur Intensit{\"a}t der Bl{\"u}te-Best{\"a}uber-Interaktion auf Stilllegungsfl{\"a}chen, zum fl{\"a}chenbezogenen quantitativen Nektarangebot im Jahresverlauf, zur individuellen Pollennutzung bei Syrphiden und zur Breite und {\"U}berlappung der Nahrungsnischen bei den dominanten Arten Episyrphus balteatus, Metasyrphus corollae, Syritta pipiens und Sphaerophoria scripta statt. Im Ergebnis zeigt sich eine hohe Bedeutung der Brachfl{\"a}chen f{\"u}r die Stabilit{\"a}t des Bl{\"u}te-Best{\"a}uber-Netzes, w{\"a}hrend die Diversit{\"a}t von anderen, eher landschaftsbezogenen Faktoren abh{\"a}ngig ist.}, subject = {Feldberger Seenlandschaft ; Agrarlandschaft ; Brache ; Samenpflanzen ; Best{\"a}uber ; Artenreichtum}, language = {de} } @article{JulierJardineAduBreduetal.2017, author = {Julier, Adele C. M. and Jardine, Phillip E. and Adu-Bredu, Stephen and Coe, Angela L. and Duah-Gyamfi, Akwasi and Fraser, Wesley T. and Lomax, Barry H. and Malhi, Yadvinder and Moore, Sam and Owusu-Afriyie, Kennedy and Gosling, William D.}, title = {The modern pollen-vegetation relationships of a tropical forest-savannah mosaic landscape, Ghana, West Africa}, series = {Palynology}, volume = {42}, journal = {Palynology}, number = {3}, publisher = {Taylor \& Francis Group}, address = {Philadelphia}, issn = {0191-6122}, doi = {10.1080/01916122.2017.1356392}, pages = {324 -- 338}, year = {2017}, abstract = {Transitions between forest and savannah vegetation types in fossil pollen records are often poorly understood due to over-production by taxa such as Poaceae and a lack of modern pollen-vegetation studies. Here, modern pollen assemblages from within a forest-savannah transition in West Africa are presented and compared, their characteristic taxa discussed, and implications for the fossil record considered. Fifteen artificial pollen traps were deployed for 1 year, to collect pollen rain from three vegetation plots within the forest-savannah transition in Ghana. High percentages of Poaceae and Melastomataceae/Combretaceae were recorded in all three plots. Erythrophleum suaveolens characterised the forest plot, Manilkara obovata the transition plot and Terminalia the savannah plot. The results indicate that Poaceae pollen influx rates provide the best representation of the forest-savannah gradient, and that a Poaceae abundance of >40\% should be considered as indicative of savannah-type vegetation in the fossil record.}, language = {en} } @article{LiTianRudayaetal.2022, author = {Li, Wenjia and Tian, Fang and Rudaya, Natalya A. and Herzschuh, Ulrike and Cao, Xianyong}, title = {Pollen-based holocene thawing-history of permafrost in Northern Asia and its potential impacts on climate change}, series = {Frontiers in Ecology and Evolution}, volume = {10}, journal = {Frontiers in Ecology and Evolution}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-701X}, doi = {10.3389/fevo.2022.894471}, pages = {13}, year = {2022}, abstract = {As the recent permafrost thawing of northern Asia proceeds due to anthropogenic climate change, precise and detailed palaeoecological records from past warm periods are essential to anticipate the extent of future permafrost variations. Here, based on the modern relationship between permafrost and vegetation (represented by pollen assemblages), we trained a Random Forest model using pollen and permafrost data and verified its reliability to reconstruct the history of permafrost in northern Asia during the Holocene. An early Holocene (12-8 cal ka BP) strong thawing trend, a middle-to-late Holocene (8-2 cal ka BP) relatively slow thawing trend, and a late Holocene freezing trend of permafrost in northern Asia are consistent with climatic proxies such as summer solar radiation and Northern Hemisphere temperature. The extensive distribution of permafrost in northern Asia inhibited the spread of evergreen coniferous trees during the early Holocene warming and might have decelerated the enhancement of the East Asian summer monsoon (EASM) by altering hydrological processes and albedo. Based on these findings, we suggest that studies of the EASM should consider more the state of permafrost and vegetation in northern Asia, which are often overlooked and may have a profound impact on climate change in this region.}, language = {en} } @article{LiWangHerzschuhetal.2022, author = {Li, Zhen and Wang, Yongbo and Herzschuh, Ulrike and Cao, Xianyong and Ni, Jian and Zhao, Yan}, title = {Pollen-based biome reconstruction on the Qinghai-Tibetan Plateau during the past 15,000 years}, series = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, volume = {604}, journal = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0031-0182}, doi = {10.1016/j.palaeo.2022.111190}, pages = {12}, year = {2022}, abstract = {Reconstruction of past vegetation change is critical for better understanding the potential impact of future global change on the fragile alpine ecosystems of the Qinghai-Tibetan Plateau (QTP). In this paper, pollen assemblages comprising 58 records from the QTP, spanning the past 15 kyrs, were collected to reconstruct biome compositions using a standard approach. Six forest biomes were identified mainly on the southeastern plateau, exhibiting a pattern of gradual expansion along the eastern margin during early to mid-Holocene times. The alpine meadow biome was separately identified based on an updated scheme, and showed notable westward expansions towards lower latitudes and higher altitudes during early Holocene times. Consistent patterns of migration could also be identified for the alpine steppe biome, which moved eastward during the late Holocene after 4 ka. As the dominant biome type, temperate steppe was distributed widely over the QTP with minor migration patterns, except for a progressive expansion to lower altitudes in the late Holocene times. The desert biome was inferred mainly as covering the northwestern plateau and the Qaidam Basin, in relatively restricted areas. The spatial distribution of the reconstructed biomes represent the large-scale vegetation gradient on the QTP. Monsoonal precipitation expressed predominant controls on the development of alpine ecosystems, while the variations in desert vegetation responded to regional moisture brought by the mid-latitude Westerlies. Temperature changes played relatively minor roles in the variations of alpine vegetation, but exerted more significant impacts on the forest biomes.}, language = {en} }