@article{MendelHercherZupoketal.2020, author = {Mendel, Ralf R. and Hercher, Thomas W. and Zupok, Arkadiusz and Hasnat, Muhammad Abrar and Leimk{\"u}hler, Silke}, title = {The requirement of inorganic Fe-S clusters for the biosynthesis of the organometallic molybdenum cofactor}, series = {Inorganics : open access journal}, volume = {8}, journal = {Inorganics : open access journal}, number = {7}, publisher = {MDPI}, address = {Basel}, issn = {2304-6740}, doi = {10.3390/inorganics8070043}, pages = {23}, year = {2020}, abstract = {Iron-sulfur (Fe-S) clusters are essential protein cofactors. In enzymes, they are present either in the rhombic [2Fe-2S] or the cubic [4Fe-4S] form, where they are involved in catalysis and electron transfer and in the biosynthesis of metal-containing prosthetic groups like the molybdenum cofactor (Moco). Here, we give an overview of the assembly of Fe-S clusters in bacteria and humans and present their connection to the Moco biosynthesis pathway. In all organisms, Fe-S cluster assembly starts with the abstraction of sulfur froml-cysteine and its transfer to a scaffold protein. After formation, Fe-S clusters are transferred to carrier proteins that insert them into recipient apo-proteins. In eukaryotes like humans and plants, Fe-S cluster assembly takes place both in mitochondria and in the cytosol. Both Moco biosynthesis and Fe-S cluster assembly are highly conserved among all kingdoms of life. Moco is a tricyclic pterin compound with molybdenum coordinated through its unique dithiolene group. Moco biosynthesis begins in the mitochondria in a Fe-S cluster dependent step involving radical/S-adenosylmethionine (SAM) chemistry. An intermediate is transferred to the cytosol where the dithiolene group is formed, to which molybdenum is finally added. Further connections between Fe-S cluster assembly and Moco biosynthesis are discussed in detail.}, language = {en} } @phdthesis{Stoltnow2023, author = {Stoltnow, Malte}, title = {Magmatic-hydrothermal processes along the porphyry to epithermal transition}, doi = {10.25932/publishup-61140}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-611402}, school = {Universit{\"a}t Potsdam}, pages = {xxviii, 132}, year = {2023}, abstract = {Magmatic-hydrothermal systems form a variety of ore deposits at different proximities to upper-crustal hydrous magma chambers, ranging from greisenization in the roof zone of the intrusion, porphyry mineralization at intermediate depths to epithermal vein deposits near the surface. The physical transport processes and chemical precipitation mechanisms vary between deposit types and are often still debated. The majority of magmatic-hydrothermal ore deposits are located along the Pacific Ring of Fire, whose eastern part is characterized by the Mesozoic to Cenozoic orogenic belts of the western North and South Americas, namely the American Cordillera. Major magmatic-hydrothermal ore deposits along the American Cordillera include (i) porphyry Cu(-Mo-Au) deposits (along the western cordilleras of Mexico, the western U.S., Canada, Chile, Peru, and Argentina); (ii) Climax- (and sub-) type Mo deposits (Colorado Mineral Belt and northern New Mexico); and (iii) porphyry and IS-type epithermal Sn(-W-Ag) deposits of the Central Andean Tin Belt (Bolivia, Peru and northern Argentina). The individual studies presented in this thesis primarily focus on the formation of different styles of mineralization located at different proximities to the intrusion in magmatic-hydrothermal systems along the American Cordillera. This includes (i) two individual geochemical studies on the Sweet Home Mine in the Colorado Mineral Belt (potential endmember of peripheral Climax-type mineralization); (ii) one numerical modeling study setup in a generic porphyry Cu-environment; and (iii) a numerical modeling study on the Central Andean Tin Belt-type Pirquitas Mine in NW Argentina. Microthermometric data of fluid inclusions trapped in greisen quartz and fluorite from the Sweet Home Mine (Detroit City Portal) suggest that the early-stage mineralization precipitated from low- to medium-salinity (1.5-11.5 wt.\% equiv. NaCl), CO2-bearing fluids at temperatures between 360 and 415°C and at depths of at least 3.5 km. Stable isotope and noble gas isotope data indicate that greisen formation and base metal mineralization at the Sweet Home Mine was related to fluids of different origins. Early magmatic fluids were the principal source for mantle-derived volatiles (CO2, H2S/SO2, noble gases), which subsequently mixed with significant amounts of heated meteoric water. Mixing of magmatic fluids with meteoric water is constrained by δ2Hw-δ18Ow relationships of fluid inclusions. The deep hydrothermal mineralization at the Sweet Home Mine shows features similar to deep hydrothermal vein mineralization at Climax-type Mo deposits or on their periphery. This suggests that fluid migration and the deposition of ore and gangue minerals in the Sweet Home Mine was triggered by a deep-seated magmatic intrusion. The second study on the Sweet Home Mine presents Re-Os molybdenite ages of 65.86±0.30 Ma from a Mo-mineralized major normal fault, namely the Contact Structure, and multimineral Rb-Sr isochron ages of 26.26±0.38 Ma and 25.3±3.0 Ma from gangue minerals in greisen assemblages. The age data imply that mineralization at the Sweet Home Mine formed in two separate events: Late Cretaceous (Laramide-related) and Oligocene (Rio Grande Rift-related). Thus, the age of Mo mineralization at the Sweet Home Mine clearly predates that of the Oligocene Climax-type deposits elsewhere in the Colorado Mineral Belt. The Re-Os and Rb-Sr ages also constrain the age of the latest deformation along the Contact Structure to between 62.77±0.50 Ma and 26.26±0.38 Ma, which was employed and/or crosscut by Late Cretaceous and Oligocene fluids. Along the Contact Structure Late Cretaceous molybdenite is spatially associated with Oligocene minerals in the same vein system, a feature that precludes molybdenite recrystallization or reprecipitation by Oligocene ore fluids. Ore precipitation in porphyry copper systems is generally characterized by metal zoning (Cu-Mo to Zn-Pb-Ag), which is suggested to be variably related to solubility decreases during fluid cooling, fluid-rock interactions, partitioning during fluid phase separation and mixing with external fluids. The numerical modeling study setup in a generic porphyry Cu-environment presents new advances of a numerical process model by considering published constraints on the temperature- and salinity-dependent solubility of Cu, Pb and Zn in the ore fluid. This study investigates the roles of vapor-brine separation, halite saturation, initial metal contents, fluid mixing, and remobilization as first-order controls of the physical hydrology on ore formation. The results show that the magmatic vapor and brine phases ascend with different residence times but as miscible fluid mixtures, with salinity increases generating metal-undersaturated bulk fluids. The release rates of magmatic fluids affect the location of the thermohaline fronts, leading to contrasting mechanisms for ore precipitation: higher rates result in halite saturation without significant metal zoning, lower rates produce zoned ore shells due to mixing with meteoric water. Varying metal contents can affect the order of the final metal precipitation sequence. Redissolution of precipitated metals results in zoned ore shell patterns in more peripheral locations and also decouples halite saturation from ore precipitation. The epithermal Pirquitas Sn-Ag-Pb-Zn mine in NW Argentina is hosted in a domain of metamorphosed sediments without geological evidence for volcanic activity within a distance of about 10 km from the deposit. However, recent geochemical studies of ore-stage fluid inclusions indicate a significant contribution of magmatic volatiles. This study tested different formation models by applying an existing numerical process model for porphyry-epithermal systems with a magmatic intrusion located either at a distance of about 10 km underneath the nearest active volcano or hidden underneath the deposit. The results show that the migration of the ore fluid over a 10-km distance results in metal precipitation by cooling before the deposit site is reached. In contrast, simulations with a hidden magmatic intrusion beneath the Pirquitas deposit are in line with field observations, which include mineralized hydrothermal breccias in the deposit area.}, language = {en} } @article{TeraoGarattiniRomaoetal.2020, author = {Terao, Mineko and Garattini, Enrico and Rom{\~a}o, Maria Jo{\~a}o and Leimk{\"u}hler, Silke}, title = {Evolution, expression, and substrate specificities of aldehyde oxidase enzymes in eukaryotes}, series = {The journal of biological chemistry}, volume = {295}, journal = {The journal of biological chemistry}, number = {16}, publisher = {American Society for Biochemistry and Molecular Biology}, address = {Rockville}, issn = {0021-9258}, doi = {10.1074/jbc.REV119.007741}, pages = {5377 -- 5389}, year = {2020}, abstract = {Aldehyde oxidases (AOXs) are a small group of enzymes belonging to the larger family of molybdo-flavoenzymes, along with the well-characterized xanthine oxidoreductase. The two major types of reactions that are catalyzed by AOXs are the hydroxylation of heterocycles and the oxidation of aldehydes to their corresponding carboxylic acids. Different animal species have different complements of AOX genes. The two extremes are represented in humans and rodents; whereas the human genome contains a single active gene (AOX1), those of rodents, such as mice, are endowed with four genes (Aox1-4), clustering on the same chromosome, each encoding a functionally distinct AOX enzyme. It still remains enigmatic why some species have numerous AOX enzymes, whereas others harbor only one functional enzyme. At present, little is known about the physiological relevance of AOX enzymes in humans and their additional forms in other mammals. These enzymes are expressed in the liver and play an important role in the metabolisms of drugs and other xenobiotics. In this review, we discuss the expression, tissue-specific roles, and substrate specificities of the different mammalian AOX enzymes and highlight insights into their physiological roles.}, language = {en} }