@article{AllanManningAltetal.2015, author = {Allan, Eric and Manning, Pete and Alt, Fabian and Binkenstein, Julia and Blaser, Stefan and Bl{\"u}thgen, Nico and B{\"o}hm, Stefan and Grassein, Fabrice and H{\"o}lzel, Norbert and Klaus, Valentin H. and Kleinebecker, Till and Morris, E. Kathryn and Oelmann, Yvonne and Prati, Daniel and Renner, Swen C. and Rillig, Matthias C. and Schaefer, Martin and Schloter, Michael and Schmitt, Barbara and Sch{\"o}ning, Ingo and Schrumpf, Marion and Solly, Emily and Sorkau, Elisabeth and Steckel, Juliane and Steffen-Dewenter, Ingolf and Stempfhuber, Barbara and Tschapka, Marco and Weiner, Christiane N. and Weisser, Wolfgang W. and Werner, Michael and Westphal, Catrin and Wilcke, Wolfgang and Fischer, Markus}, title = {Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition}, series = {Ecology letters}, volume = {18}, journal = {Ecology letters}, number = {8}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1461-023X}, doi = {10.1111/ele.12469}, pages = {834 -- 843}, year = {2015}, abstract = {Global change, especially land-use intensification, affects human well-being by impacting the delivery of multiple ecosystem services (multifunctionality). However, whether biodiversity loss is a major component of global change effects on multifunctionality in real-world ecosystems, as in experimental ones, remains unclear. Therefore, we assessed biodiversity, functional composition and 14 ecosystem services on 150 agricultural grasslands differing in land-use intensity. We also introduce five multifunctionality measures in which ecosystem services were weighted according to realistic land-use objectives. We found that indirect land-use effects, i.e. those mediated by biodiversity loss and by changes to functional composition, were as strong as direct effects on average. Their strength varied with land-use objectives and regional context. Biodiversity loss explained indirect effects in a region of intermediate productivity and was most damaging when land-use objectives favoured supporting and cultural services. In contrast, functional composition shifts, towards fast-growing plant species, strongly increased provisioning services in more inherently unproductive grasslands.}, language = {en} } @article{BizicIonescuKarnataketal.2022, author = {Bizic, Mina and Ionescu, Danny and Karnatak, Rajat and Musseau, Camille L. and Onandia, Gabriela and Berger, Stella A. and Nejstgaard, Jens C. and Lischeid, Gunnar and Gessner, Mark O. and Wollrab, Sabine and Grossart, Hans-Peter}, title = {Land-use type temporarily affects active pond community structure but not gene expression patterns}, series = {Molecular ecology}, volume = {31}, journal = {Molecular ecology}, number = {6}, publisher = {Wiley}, address = {Hoboken}, issn = {0962-1083}, doi = {10.1111/mec.16348}, pages = {1716 -- 1734}, year = {2022}, abstract = {Changes in land use and agricultural intensification threaten biodiversity and ecosystem functioning of small water bodies. We studied 67 kettle holes (KH) in an agricultural landscape in northeastern Germany using landscape-scale metatranscriptomics to understand the responses of active bacterial, archaeal and eukaryotic communities to land-use type. These KH are proxies of the millions of small standing water bodies of glacial origin spread across the northern hemisphere. Like other landscapes in Europe, the study area has been used for intensive agriculture since the 1950s. In contrast to a parallel environmental DNA study that suggests the homogenization of biodiversity across KH, conceivably resulting from long-lasting intensive agriculture, land-use type affected the structure of the active KH communities during spring crop fertilization, but not a month later. This effect was more pronounced for eukaryotes than for bacteria. In contrast, gene expression patterns did not differ between months or across land-use types, suggesting a high degree of functional redundancy across the KH communities. Variability in gene expression was best explained by active bacterial and eukaryotic community structures, suggesting that these changes in functioning are primarily driven by interactions between organisms. Our results indicate that influences of the surrounding landscape result in temporary changes in the activity of different community members. Thus, even in KH where biodiversity has been homogenized, communities continue to respond to land management. This potential needs to be considered when developing sustainable management options for restoration purposes and for successful mitigation of further biodiversity loss in agricultural landscapes.}, language = {en} } @article{BochMuellerPratietal.2018, author = {Boch, Steffen and M{\"u}ller, J{\"o}rg and Prati, Daniel and Fischer, Markus}, title = {Low-intensity management promotes bryophyte diversity in grasslands}, series = {Tuexenia : Mitteilungen der Floristisch-Soziologischen Arbeitsgemeinschaft}, journal = {Tuexenia : Mitteilungen der Floristisch-Soziologischen Arbeitsgemeinschaft}, number = {38}, publisher = {Floristisch-Soziologische Arbeitsgemeinschaft}, address = {G{\"o}ttingen}, issn = {0722-494X}, doi = {10.14471/2018.38.014}, pages = {311 -- 328}, year = {2018}, abstract = {Bryophytes constitute an important and permanent component of the grassland flora and diversity in Europe. As most bryophyte species are sensitive to habitat change, their diversity is likely to decline following land-use intensification. Most previous studies on bryophyte diversity focused on specific habitats of high bryophyte diversity, such as bogs, montane grasslands, or calcareous dry grasslands. In contrast, mesic grasslands are rarely studied, although they are the most common grassland habitat in Europe. They are secondary vegetation, maintained by agricultural use and thus, are influenced by different forms of land use. We studied bryophyte species richness in three regions in Germany, in 707 plots of 16 m(2) representing different land-use types and environmental conditions. Our study is one of the few to inspect the relationships between bryophyte richness and land use across contrasting regions and using a high number of replicates. Among the managed grasslands, pastures harboured 2.5 times more bryophyte species than meadows and mown pastures. Similarly, bryophyte cover was about twice as high in fallows and pastures than in meadows and mown pastures. Among the pastures, bryophyte species richness was about three times higher in sheep grazed plots than in the ones grazed by cattle or horses. In general, bryophyte species richness and cover was more than 50\% lower in fertilized than in unfertilized plots. Moreover, the amount of suitable substrates was linked to bryophyte diversity. Species richness of bryophytes growing on stones increased with stone cover, and the one of bryophytes growing on bark and deadwood increased with larger values of woody plant species and deadwood cover. Our findings highlight the importance of low-intensity land use and high structural heterogeneity for bryophyte conservation. They also caution against an intensification of traditionally managed pastures. In the light of our results, we recommend to maintain low-intensity sheep grazing on sites with low productivity, such as slopes on shallow soils.}, language = {en} } @misc{BochMuellerPratietal.2018, author = {Boch, Steffen and M{\"u}ller, J{\"o}rg and Prati, Daniel and Fischer, Markus}, title = {Low-intensity management promotes bryophyte diversity in grasslands}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1049}, issn = {1866-8372}, doi = {10.25932/publishup-46008}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-460086}, pages = {311 -- 328}, year = {2018}, abstract = {Bryophytes constitute an important and permanent component of the grassland flora and diversity in Europe. As most bryophyte species are sensitive to habitat change, their diversity is likely to decline following land-use intensification. Most previous studies on bryophyte diversity focused on specific habitats of high bryophyte diversity, such as bogs, montane grasslands, or calcareous dry grasslands. In contrast, mesic grasslands are rarely studied, although they are the most common grassland habitat in Europe. They are secondary vegetation, maintained by agricultural use and thus, are influenced by different forms of land use. We studied bryophyte species richness in three regions in Germany, in 707 plots of 16 m2 representing different land-use types and environmental conditions. Our study is one of the few to inspect the relationships between bryophyte richness and land use across contrasting regions and using a high number of replicates.Among the managed grasslands, pastures harboured 2.5 times more bryophyte species than mead-ows and mown pastures. Similarly, bryophyte cover was about twice as high in fallows and pastures than in meadows and mown pastures. Among the pastures, bryophyte species richness was about three times higher in sheep grazed plots than in the ones grazed by cattle or horses. In general, bryophyte species richness and cover was more than 50\% lower in fertilized than in unfertilized plots. Moreover, the amount of suitable substrates was linked to bryophyte diversity. Species richness of bryophytes growing on stones increased with stone cover, and the one of bryophytes growing on bark and deadwood increased with larger values of woody plant species and deadwood cover. Our findings highlight the importance of low-intensity land use and high structural heterogeneity for bryophyte conservation. They also caution against an intensification of traditionally managed pastures. In the light of our results, we recommend to maintain low-intensity sheep grazing on sites with low productivity, such as slopes on shallow soils.}, language = {en} } @article{IonescuBizicKarnataketal.2022, author = {Ionescu, Danny and Bizic, Mina and Karnatak, Rajat and Musseau, Camille L. and Onandia, Gabriela and Kasada, Minoru and Berger, Stella A. and Nejstgaard, Jens Christian and Ryo, Masahiro and Lischeid, Gunnar and Gessner, Mark O. and Wollrab, Sabine and Grossart, Hans-Peter}, title = {From microbes to mammals: Pond biodiversity homogenization across different land-use types in an agricultural landscape}, series = {Ecological monographs}, volume = {92}, journal = {Ecological monographs}, number = {3}, publisher = {Wiley}, address = {Hoboken}, issn = {0012-9615}, doi = {10.1002/ecm.1523}, pages = {28}, year = {2022}, abstract = {Local biodiversity patterns are expected to strongly reflect variation in topography, land use, dispersal boundaries, nutrient supplies, contaminant spread, management practices, and other anthropogenic influences. Contrary to this expectation, studies focusing on specific taxa revealed a biodiversity homogenization effect in areas subjected to long-term intensive industrial agriculture. We investigated whether land use affects biodiversity levels and community composition (alpha- and beta-diversity) in 67 kettle holes (KH) representing small aquatic islands embedded in the patchwork matrix of a largely agricultural landscape comprising grassland, forest, and arable fields. These KH, similar to millions of standing water bodies of glacial origin, spread across northern Europe, Asia, and North America, are physico-chemically diverse and differ in the degree of coupling with their surroundings. We assessed aquatic and sediment biodiversity patterns of eukaryotes, Bacteria, and Archaea in relation to environmental features of the KH, using deep-amplicon-sequencing of environmental DNA (eDNA). First, we asked whether deep sequencing of eDNA provides a representative picture of KH aquatic biodiversity across the Bacteria, Archaea, and eukaryotes. Second, we investigated if and to what extent KH biodiversity is influenced by the surrounding land use. We hypothesized that richness and community composition will greatly differ in KH from agricultural land use compared with KH in grasslands and forests. Our data show that deep eDNA amplicon sequencing is useful for in-depth assessments of cross-domain biodiversity comprising both micro- and macro-organisms, but has limitations with respect to single-taxa conservation studies. Using this broad method, we show that sediment eDNA, integrating several years to decades, depicts the history of agricultural land-use intensification. Aquatic biodiversity was best explained by seasonality, whereas land-use type explained little of the variation. We concluded that, counter to our hypothesis, land use intensification coupled with landscape wide nutrient enrichment (including atmospheric deposition), groundwater connectivity between KH and organismal (active and passive) dispersal in the tight network of ponds, resulted in a biodiversity homogenization in the KH water, leveling off today's detectable differences in KH biodiversity between land-use types. These findings have profound implications for measures and management strategies to combat current biodiversity loss in agricultural landscapes worldwide.}, language = {en} } @article{IrobBlaumBaldaufetal.2022, author = {Irob, Katja and Blaum, Niels and Baldauf, Selina and Kerger, Leon and Strohbach, Ben and Kanduvarisa, Angelina and Lohmann, Dirk and Tietjen, Britta}, title = {Browsing herbivores improve the state and functioning of savannas}, series = {Ecology and evolution}, volume = {12}, journal = {Ecology and evolution}, number = {3}, publisher = {Wiley}, address = {Hoboken}, issn = {2045-7758}, doi = {10.1002/ece3.8715}, pages = {19}, year = {2022}, abstract = {Changing climatic conditions and unsustainable land use are major threats to savannas worldwide. Historically, many African savannas were used intensively for livestock grazing, which contributed to widespread patterns of bush encroachment across savanna systems. To reverse bush encroachment, it has been proposed to change the cattle-dominated land use to one dominated by comparatively specialized browsers and usually native herbivores. However, the consequences for ecosystem properties and processes remain largely unclear. We used the ecohydrological, spatially explicit model EcoHyD to assess the impacts of two contrasting, herbivore land-use strategies on a Namibian savanna: grazer- versus browser-dominated herbivore communities. We varied the densities of grazers and browsers and determined the resulting composition and diversity of the plant community, total vegetation cover, soil moisture, and water use by plants. Our results showed that plant types that are less palatable to herbivores were best adapted to grazing or browsing animals in all simulated densities. Also, plant types that had a competitive advantage under limited water availability were among the dominant ones irrespective of land-use scenario. Overall, the results were in line with our expectations: under high grazer densities, we found heavy bush encroachment and the loss of the perennial grass matrix. Importantly, regardless of the density of browsers, grass cover and plant functional diversity were significantly higher in browsing scenarios. Browsing herbivores increased grass cover, and the higher total cover in turn improved water uptake by plants overall. We concluded that, in contrast to grazing-dominated land-use strategies, land-use strategies dominated by browsing herbivores, even at high herbivore densities, sustain diverse vegetation communities with high cover of perennial grasses, resulting in lower erosion risk and bolstering ecosystem services.}, language = {en} } @article{KoelmanHuybrechtsBiesbroeketal.2022, author = {Koelman, Liselot A. and Huybrechts, Inge and Biesbroek, Sander and van 't Veer, Pieter and Schulze, Matthias Bernd and Aleksandrova, Krasimira}, title = {Dietary choices impact on greenhouse gas emissions}, series = {Sustainability / Multidisciplinary Digital Publishing Institute (MDPI)}, volume = {14}, journal = {Sustainability / Multidisciplinary Digital Publishing Institute (MDPI)}, number = {7}, publisher = {MDPI}, address = {Basel}, issn = {2071-1050}, doi = {10.3390/su14073854}, pages = {10}, year = {2022}, abstract = {The present study estimated diet-related greenhouse gas emissions (GHGE) and land use (LU) in a sample of adults, examined main dietary contributors of GHGE, and evaluated socio demographic, lifestyle, and wellbeing factors as potential determinants of high environmental impact. A cross-sectional design based on data collected from the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam cohort (2010-2012) was used. Usual diet was assessed using food frequency questionnaires. Diet-related GHGE and LU were calculated using a European-average lifecycle analyses-food-item database (SHARP-ID). Information on potential determinants were collected using self-administered questionnaires. Men (n = 404) and women (n = 401) at an average age of 66.0 +/- 8.4 years were included. Dietary-related energy-adjusted GHGE in men was 6.6 +/- 0.9 and in women was 7.0 +/- 1.1 kg CO2 eq per 2000 kcal. LU in men was 7.8 +/- 1.2 and in women was 7.7 +/- 1.2 m(2)/year per 2000 kcal. Food groups contributing to most GHGE included dairy, meat and non-alcoholic beverages. Among women, being single, having a job, being a smoker and having higher BMI were characteristics associated with higher GHGE, whereas for men these included being married, longer sleeping duration and higher BMI. Further studies are warranted to provide insights into population-specific determinants of sustainable dietary choices.}, language = {en} } @article{KoenigZhenHelmingetal.2014, author = {Koenig, H. J. and Zhen, L. and Helming, K. and Uthes, S. and Yang, L. and Cao, Xianyong and Wiggering, Hubert}, title = {Assessing the impact of the sloping land conversion programme on rural sustainability in Guyuan, Western China}, series = {Land degradation \& development}, volume = {25}, journal = {Land degradation \& development}, number = {4}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1085-3278}, doi = {10.1002/ldr.2164}, pages = {385 -- 396}, year = {2014}, abstract = {The goal of China's sloping land conversion programme (SLCP) is to combat soil erosion and to reduce rural poverty. An ex-ante assessment of possible SLCP impacts was conducted with a focus on rural sustainability, taking the drought-prone region of Guyuan in Western China as an example. The Framework for Participatory Impact Assessment (FoPIA) was used to conduct two complementary impact assessments, one assessing SLCP impacts at regional level and a second one assessing alternative forest management options, to explore possible trade-offs among the economic, social and environmental dimensions of sustainability. Regional stakeholders assessed the SLCP to be capable of reducing soil erosion but felt it negatively affected rural employment, and a further continuation of the Programme was advocated. Assessment of three forest management scenarios by scientists showed that an orientation towards energy forests is potentially beneficial to all three sustainability dimensions. Ecological forests had disproportionate positive impacts on environmental functions and adverse impact on the other two sustainability dimensions. Economic forests were assessed to serve primarily the economic and social sustainability dimensions, while environmental impacts were still tolerable. The FoPIA results were evaluated against the available literature on the SLCP. Overall, the assessment results appeared to be reasonable, but the results of the regional stakeholders appeared to be too optimistic compared with the more critical assessment of the scientists. The SLCP seems to have the potential to tackle soil erosion but requires integrated forest management to minimize the risk of water stress while contributing to economic and social benefits in Guyuan. Copyright (C) 2012 John Wiley \& Sons, Ltd.}, language = {en} } @phdthesis{Koenig2012, author = {K{\"o}nig, Hannes Jochen}, title = {Operationalising sustainability impact assessment of land use scenarios in developing countries : a stakeholder-based approach with case studies in China, India, Indonesia, Kenya, and Tunisia}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-63672}, school = {Universit{\"a}t Potsdam}, year = {2012}, abstract = {Growing populations, continued economic development, and limited natural resources are critical factors affecting sustainable development. These factors are particularly pertinent in developing countries in which large parts of the population live at a subsistence level and options for sustainable development are limited. Therefore, addressing sustainable land use strategies in such contexts requires that decision makers have access to evidence-based impact assessment tools that can help in policy design and implementation. Ex-ante impact assessment is an emerging field poised at the science-policy interface and is used to assess the potential impacts of policy while also exploring trade-offs between economic, social and environmental sustainability targets. The objective of this study was to operationalise the impact assessment of land use scenarios in the context of developing countries that are characterised by limited data availability and quality. The Framework for Participatory Impact Assessment (FoPIA) was selected for this study because it allows for the integration of various sustainability dimensions, the handling of complexity, and the incorporation of local stakeholder perceptions. FoPIA, which was originally developed for the European context, was adapted to the conditions of developing countries, and its implementation was demonstrated in five selected case studies. In each case study, different land use options were assessed, including (i) alternative spatial planning policies aimed at the controlled expansion of rural-urban development in the Yogyakarta region (Indonesia), (ii) the expansion of soil and water conservation measures in the Oum Zessar watershed (Tunisia), (iii) the use of land conversion and the afforestation of agricultural areas to reduce soil erosion in Guyuan district (China), (iv) agricultural intensification and the potential for organic agriculture in Bijapur district (India), and (v) land division and privatisation in Narok district (Kenya). The FoPIA method was effectively adapted by dividing the assessment into three conceptual steps: (i) scenario development; (ii) specification of the sustainability context; and (iii) scenario impact assessment. A new methodological approach was developed for communicating alternative land use scenarios to local stakeholders and experts and for identifying recommendations for future land use strategies. Stakeholder and expert knowledge was used as the main sources of information for the impact assessment and was complemented by available quantitative data. Based on the findings from the five case studies, FoPIA was found to be suitable for implementing the impact assessment at case study level while ensuring a high level of transparency. FoPIA supports the identification of causal relationships underlying regional land use problems, facilitates communication among stakeholders and illustrates the effects of alternative decision options with respect to all three dimensions of sustainable development. Overall, FoPIA is an appropriate tool for performing preliminary assessments but cannot replace a comprehensive quantitative impact assessment, and FoPIA should, whenever possible, be accompanied by evidence from monitoring data or analytical tools. When using FoPIA for a policy oriented impact assessment, it is recommended that the process should follow an integrated, complementary approach that combines quantitative models, scenario techniques, and participatory methods.}, language = {en} } @phdthesis{Leins2023, author = {Leins, Johannes A.}, title = {Combining model detail with large scales}, doi = {10.25932/publishup-58283}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-582837}, school = {Universit{\"a}t Potsdam}, pages = {xv, 168}, year = {2023}, abstract = {The global climate crisis is significantly contributing to changing ecosystems, loss of biodiversity and is putting numerous species on the verge of extinction. In principle, many species are able to adapt to changing conditions or shift their habitats to more suitable regions. However, change is progressing faster than some species can adjust, or potential adaptation is blocked and disrupted by direct and indirect human action. Unsustainable anthropogenic land use in particular is one of the driving factors, besides global heating, for these ecologically critical developments. Precisely because land use is anthropogenic, it is also a factor that could be quickly and immediately corrected by human action. In this thesis, I therefore assess the impact of three climate change scenarios of increasing intensity in combination with differently scheduled mowing regimes on the long-term development and dispersal success of insects in Northwest German grasslands. The large marsh grasshopper (LMG, Stethophyma grossum, Linn{\´e} 1758) is used as a species of reference for the analyses. It inhabits wet meadows and marshes and has a limited, yet fairly good ability to disperse. Mowing and climate conditions affect the development and mortality of the LMG differently depending on its life stage. The specifically developed simulation model HiLEG (High-resolution Large Environmental Gradient) serves as a tool for investigating and projecting viability and dispersal success under different climate conditions and land use scenarios. It is a spatially explicit, stage- and cohort-based model that can be individually configured to represent the life cycle and characteristics of terrestrial insect species, as well as high-resolution environmental data and the occurrence of external disturbances. HiLEG is a freely available and adjustable software that can be used to support conservation planning in cultivated grasslands. In the three case studies of this thesis, I explore various aspects related to the structure of simulation models per se, their importance in conservation planning in general, and insights regarding the LMG in particular. It became apparent that the detailed resolution of model processes and components is crucial to project the long-term effect of spatially and temporally confined events. Taking into account conservation measures at the regional level has further proven relevant, especially in light of the climate crisis. I found that the LMG is benefiting from global warming in principle, but continues to be constrained by harmful mowing regimes. Land use measures could, however, be adapted in such a way that they allow the expansion and establishment of the LMG without overly affecting agricultural yields. Overall, simulation models like HiLEG can make an important contribution and add value to conservation planning and policy-making. Properly used, simulation results shed light on aspects that might be overlooked by subjective judgment and the experience of individual stakeholders. Even though it is in the nature of models that they are subject to limitations and only represent fragments of reality, this should not keep stakeholders from using them, as long as these limitations are clearly communicated. Similar to HiLEG, models could further be designed in such a way that not only the parameterization can be adjusted as required, but also the implementation itself can be improved and changed as desired. This openness and flexibility should become more widespread in the development of simulation models.}, language = {en} }