@article{AllanManningAltetal.2015, author = {Allan, Eric and Manning, Pete and Alt, Fabian and Binkenstein, Julia and Blaser, Stefan and Bl{\"u}thgen, Nico and B{\"o}hm, Stefan and Grassein, Fabrice and H{\"o}lzel, Norbert and Klaus, Valentin H. and Kleinebecker, Till and Morris, E. Kathryn and Oelmann, Yvonne and Prati, Daniel and Renner, Swen C. and Rillig, Matthias C. and Schaefer, Martin and Schloter, Michael and Schmitt, Barbara and Sch{\"o}ning, Ingo and Schrumpf, Marion and Solly, Emily and Sorkau, Elisabeth and Steckel, Juliane and Steffen-Dewenter, Ingolf and Stempfhuber, Barbara and Tschapka, Marco and Weiner, Christiane N. and Weisser, Wolfgang W. and Werner, Michael and Westphal, Catrin and Wilcke, Wolfgang and Fischer, Markus}, title = {Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition}, series = {Ecology letters}, volume = {18}, journal = {Ecology letters}, number = {8}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1461-023X}, doi = {10.1111/ele.12469}, pages = {834 -- 843}, year = {2015}, abstract = {Global change, especially land-use intensification, affects human well-being by impacting the delivery of multiple ecosystem services (multifunctionality). However, whether biodiversity loss is a major component of global change effects on multifunctionality in real-world ecosystems, as in experimental ones, remains unclear. Therefore, we assessed biodiversity, functional composition and 14 ecosystem services on 150 agricultural grasslands differing in land-use intensity. We also introduce five multifunctionality measures in which ecosystem services were weighted according to realistic land-use objectives. We found that indirect land-use effects, i.e. those mediated by biodiversity loss and by changes to functional composition, were as strong as direct effects on average. Their strength varied with land-use objectives and regional context. Biodiversity loss explained indirect effects in a region of intermediate productivity and was most damaging when land-use objectives favoured supporting and cultural services. In contrast, functional composition shifts, towards fast-growing plant species, strongly increased provisioning services in more inherently unproductive grasslands.}, language = {en} } @article{BauerVosKlauschiesetal.2014, author = {Bauer, Barbara and Vos, Matthijs and Klauschies, Toni and Gaedke, Ursula}, title = {Diversity, functional similarity, and top-down control drive synchronization and the reliability of ecosystem function}, series = {The American naturalist : a bi-monthly journal devoted to the advancement and correlation of the biological sciences}, volume = {183}, journal = {The American naturalist : a bi-monthly journal devoted to the advancement and correlation of the biological sciences}, number = {3}, publisher = {Univ. of Chicago Press}, address = {Chicago}, issn = {0003-0147}, doi = {10.1086/674906}, pages = {394 -- 409}, year = {2014}, abstract = {The concept that diversity promotes reliability of ecosystem function depends on the pattern that community-level biomass shows lower temporal variability than species-level biomasses. However, this pattern is not universal, as it relies on compensatory or independent species dynamics. When in contrast within--trophic level synchronization occurs, variability of community biomass will approach population-level variability. Current knowledge fails to integrate how species richness, functional distance between species, and the relative importance of predation and competition combine to drive synchronization at different trophic levels. Here we clarify these mechanisms. Intense competition promotes compensatory dynamics in prey, but predators may at the same time increasingly synchronize, under increasing species richness and functional similarity. In contrast, predators and prey both show perfect synchronization under strong top-down control, which is promoted by a combination of low functional distance and high net growth potential of predators. Under such conditions, community-level biomass variability peaks, with major negative consequences for reliability of ecosystem function.}, language = {en} } @article{GhafarianWielandLuettschwageretal.2022, author = {Ghafarian, Fatemeh and Wieland, Ralf and L{\"u}ttschwager, Dietmar and Nendel, Claas}, title = {Application of extreme gradient boosting and Shapley Additive explanations to predict temperature regimes inside forests from standard open-field meteorological data}, series = {Environmental modelling \& software with environment data news}, volume = {156}, journal = {Environmental modelling \& software with environment data news}, publisher = {Elsevier}, address = {Oxford}, issn = {1364-8152}, doi = {10.1016/j.envsoft.2022.105466}, pages = {11}, year = {2022}, abstract = {Forest microclimate can buffer biotic responses to summer heat waves, which are expected to become more extreme under climate warming. Prediction of forest microclimate is limited because meteorological observation standards seldom include situations inside forests. We use eXtreme Gradient Boosting - a Machine Learning technique - to predict the microclimate of forest sites in Brandenburg, Germany, using seasonal data comprising weather features. The analysis was amended by applying a SHapley Additive explanation to show the interaction effect of variables and individualised feature attributions. We evaluate model performance in comparison to artificial neural networks, random forest, support vector machine, and multi-linear regression. After implementing a feature selection, an ensemble approach was applied to combine individual models for each forest and improve robustness over a given single prediction model. The resulting model can be applied to translate climate change scenarios into temperatures inside forests to assess temperature-related ecosystem services provided by forests.}, language = {en} } @article{HanKuhlicke2019, author = {Han, Sungju and Kuhlicke, Christian}, title = {Reducing Hydro-Meteorological Risk by Nature-Based Solutions: What Do We}, series = {Water}, volume = {11}, journal = {Water}, number = {12}, publisher = {MDPI}, address = {Basel}, issn = {2073-4441}, doi = {10.3390/w11122599}, pages = {23}, year = {2019}, abstract = {Nature-based solutions (NBS) have recently received attention due to their potential ability to sustainably reduce hydro-meteorological risks, providing co-benefits for both ecosystems and affected people. Therefore, pioneering research has dedicated efforts to optimize the design of NBS, to evaluate their wider co-benefits and to understand promoting and/or hampering governance conditions for the uptake of NBS. In this article, we aim to complement this research by conducting a comprehensive literature review of factors shaping people's perceptions of NBS as a means to reduce hydro-meteorological risks. Based on 102 studies, we identified six topics shaping the current discussion in this field of research: (1) valuation of the co-benefits (including those related to ecosystems and society); (2) evaluation of risk reduction efficacy; (3) stakeholder participation; (4) socio-economic and location-specific conditions; (5) environmental attitude, and (6) uncertainty. Our analysis reveals that concerned empirical insights are diverse and even contradictory, they vary in the depth of the insights generated and are often not comparable for a lack of a sound theoretical-methodological grounding. We, therefore, propose a conceptual model outlining avenues for future research by indicating potential inter-linkages between constructs underlying perceptions of NBS to hydro-meteorological risks.}, language = {en} } @article{HuberRiglingBebietal.2013, author = {Huber, Robert and Rigling, Andreas and Bebi, Peter and Brand, Fridolin Simon and Briner, Simon and Buttler, Alexandre and Elkin, Che and Gillet, Francois and Gret-Regamey, Adrienne and Hirschi, Christian and Lischke, Heike and Scholz, Roland Werner and Seidl, Roman and Spiegelberger, Thomas and Walz, Ariane and Zimmermann, Willi and Bugmann, Harald}, title = {Sustainable land use in Mountain Regions under global change synthesis across scales and disciplines}, series = {Ecology and society : a journal of integrative science for resilience and sustainability}, volume = {18}, journal = {Ecology and society : a journal of integrative science for resilience and sustainability}, number = {3}, publisher = {Resilience Alliance}, address = {Wolfville}, issn = {1708-3087}, doi = {10.5751/ES-05499-180336}, pages = {20}, year = {2013}, abstract = {Mountain regions provide essential ecosystem goods and services (EGS) for both mountain dwellers and people living outside these areas. Global change endangers the capacity of mountain ecosystems to provide key services. The Mountland project focused on three case study regions in the Swiss Alps and aimed to propose land-use practices and alternative policy solutions to ensure the provision of key EGS under climate and land-use changes. We summarized and synthesized the results of the project and provide insights into the ecological, socioeconomic, and political processes relevant for analyzing global change impacts on a European mountain region. In Mountland, an integrative approach was applied, combining methods from economics and the political and natural sciences to analyze ecosystem functioning from a holistic human-environment system perspective. In general, surveys, experiments, and model results revealed that climate and socioeconomic changes are likely to increase the vulnerability of the EGS analyzed. We regard the following key characteristics of coupled human-environment systems as central to our case study areas in mountain regions: thresholds, heterogeneity, trade-offs, and feedback. Our results suggest that the institutional framework should be strengthened in a way that better addresses these characteristics, allowing for (1) more integrative approaches, (2) a more network-oriented management and steering of political processes that integrate local stakeholders, and (3) enhanced capacity building to decrease the identified vulnerability as central elements in the policy process. Further, to maintain and support the future provision of EGS in mountain regions, policy making should also focus on project-oriented, cross-sectoral policies and spatial planning as a coordination instrument for land use in general.}, language = {en} } @article{RaatzBacchiPirhoferWalzletal.2019, author = {Raatz, Larissa and Bacchi, Nina and Pirhofer Walzl, Karin and Glemnitz, Michael and M{\"u}ller, Marina E. H. and Jasmin Radha, Jasmin and Scherber, Christoph}, title = {How much do we really lose?}, series = {Ecology and Evolution}, volume = {9}, journal = {Ecology and Evolution}, number = {13}, publisher = {John Wiley \& Sons}, address = {S.I.}, issn = {2045-7758}, doi = {10.1002/ece3.5370}, pages = {7838 -- 7848}, year = {2019}, abstract = {Natural landscape elements (NLEs) in agricultural landscapes contribute to biodiversity and ecosystem services, but are also regarded as an obstacle for large-scale agricultural production. However, the effects of NLEs on crop yield have rarely been measured. Here, we investigated how different bordering structures, such as agricultural roads, field-to-field borders, forests, hedgerows, and kettle holes, influence agricultural yields. We hypothesized that (a) yield values at field borders differ from mid-field yields and that (b) the extent of this change in yields depends on the bordering structure. We measured winter wheat yields along transects with log-scaled distances from the border into the agricultural field within two intensively managed agricultural landscapes in Germany (2014 near G{\"o}ttingen, and 2015-2017 in the Uckermark). We observed a yield loss adjacent to every investigated bordering structure of 11\%-38\% in comparison with mid-field yields. However, depending on the bordering structure, this yield loss disappeared at different distances. While the proximity of kettle holes did not affect yields more than neighboring agricultural fields, woody landscape elements had strong effects on winter wheat yields. Notably, 95\% of mid-field yields could already be reached at a distance of 11.3 m from a kettle hole and at a distance of 17.8 m from hedgerows as well as forest borders. Our findings suggest that yield losses are especially relevant directly adjacent to woody landscape elements, but not adjacent to in-field water bodies. This highlights the potential to simultaneously counteract yield losses close to the field border and enhance biodiversity by combining different NLEs in agricultural landscapes such as creating strips of extensive grassland vegetation between woody landscape elements and agricultural fields. In conclusion, our results can be used to quantify ecocompensations to find optimal solutions for the delivery of productive and regulative ecosystem services in heterogeneous agricultural landscapes.}, language = {en} } @misc{RaatzBacchiPirhoferWalzletal.2019, author = {Raatz, Larissa and Bacchi, Nina and Pirhofer Walzl, Karin and Glemnitz, Michael and M{\"u}ller, Marina E. H. and Jasmin Radha, Jasmin and Scherber, Christoph}, title = {How much do we really lose?}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {811}, issn = {1866-8372}, doi = {10.25932/publishup-44331}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-443313}, pages = {13}, year = {2019}, abstract = {Natural landscape elements (NLEs) in agricultural landscapes contribute to biodiversity and ecosystem services, but are also regarded as an obstacle for large-scale agricultural production. However, the effects of NLEs on crop yield have rarely been measured. Here, we investigated how different bordering structures, such as agricultural roads, field-to-field borders, forests, hedgerows, and kettle holes, influence agricultural yields. We hypothesized that (a) yield values at field borders differ from mid-field yields and that (b) the extent of this change in yields depends on the bordering structure. We measured winter wheat yields along transects with log-scaled distances from the border into the agricultural field within two intensively managed agricultural landscapes in Germany (2014 near G{\"o}ttingen, and 2015-2017 in the Uckermark). We observed a yield loss adjacent to every investigated bordering structure of 11\%-38\% in comparison with mid-field yields. However, depending on the bordering structure, this yield loss disappeared at different distances. While the proximity of kettle holes did not affect yields more than neighboring agricultural fields, woody landscape elements had strong effects on winter wheat yields. Notably, 95\% of mid-field yields could already be reached at a distance of 11.3 m from a kettle hole and at a distance of 17.8 m from hedgerows as well as forest borders. Our findings suggest that yield losses are especially relevant directly adjacent to woody landscape elements, but not adjacent to in-field water bodies. This highlights the potential to simultaneously counteract yield losses close to the field border and enhance biodiversity by combining different NLEs in agricultural landscapes such as creating strips of extensive grassland vegetation between woody landscape elements and agricultural fields. In conclusion, our results can be used to quantify ecocompensations to find optimal solutions for the delivery of productive and regulative ecosystem services in heterogeneous agricultural landscapes.}, language = {en} } @article{RaatzBacchiWalzletal.2019, author = {Raatz, Larissa and Bacchi, Nina and Walzl, Karin Pirhofer and Glemnitz, Michael and M{\"u}ller, Marina E. H. and Jasmin Radha, Jasmin and Scherber, Christoph}, title = {How much do we really lose?}, series = {Ecology and evolution}, volume = {9}, journal = {Ecology and evolution}, number = {13}, publisher = {Wiley}, address = {Hoboken}, issn = {2045-7758}, doi = {10.1002/ece3.5370}, pages = {7838 -- 7848}, year = {2019}, abstract = {Natural landscape elements (NLEs) in agricultural landscapes contribute to biodiversity and ecosystem services, but are also regarded as an obstacle for large-scale agricultural production. However, the effects of NLEs on crop yield have rarely been measured. Here, we investigated how different bordering structures, such as agricultural roads, field-to-field borders, forests, hedgerows, and kettle holes, influence agricultural yields. We hypothesized that (a) yield values at field borders differ from mid-field yields and that (b) the extent of this change in yields depends on the bordering structure. We measured winter wheat yields along transects with log-scaled distances from the border into the agricultural field within two intensively managed agricultural landscapes in Germany (2014 near Gottingen, and 2015-2017 in the Uckermark). We observed a yield loss adjacent to every investigated bordering structure of 11\%-38\% in comparison with mid-field yields. However, depending on the bordering structure, this yield loss disappeared at different distances. While the proximity of kettle holes did not affect yields more than neighboring agricultural fields, woody landscape elements had strong effects on winter wheat yields. Notably, 95\% of mid-field yields could already be reached at a distance of 11.3 m from a kettle hole and at a distance of 17.8 m from hedgerows as well as forest borders. Our findings suggest that yield losses are especially relevant directly adjacent to woody landscape elements, but not adjacent to in-field water bodies. This highlights the potential to simultaneously counteract yield losses close to the field border and enhance biodiversity by combining different NLEs in agricultural landscapes such as creating strips of extensive grassland vegetation between woody landscape elements and agricultural fields. In conclusion, our results can be used to quantify ecocompensations to find optimal solutions for the delivery of productive and regulative ecosystem services in heterogeneous agricultural landscapes.}, language = {en} } @article{RottstockJoshiKummeretal.2014, author = {Rottstock, Tanja and Joshi, Jasmin Radha and Kummer, Volker and Fischer, Markus}, title = {Higher plant diversity promotes higher diversity of fungal pathogens, while it decreases pathogen infection per plant}, series = {Ecology : a publication of the Ecological Society of America}, volume = {95}, journal = {Ecology : a publication of the Ecological Society of America}, number = {7}, publisher = {Wiley}, address = {Washington}, issn = {0012-9658}, pages = {1907 -- 1917}, year = {2014}, abstract = {Fungal plant pathogens are common in natural communities where they affect plant physiology, plant survival, and biomass production. Conversely, pathogen transmission and infection may be regulated by plant community characteristics such as plant species diversity and functional composition that favor pathogen diversity through increases in host diversity while simultaneously reducing pathogen infection via increased variability in host density and spatial heterogeneity. Therefore, a comprehensive understanding of multi-host multi-pathogen interactions is of high significance in the context of biodiversity-ecosystem functioning. We investigated the relationship between plant diversity and aboveground obligate parasitic fungal pathogen ("pathogens" hereafter) diversity and infection in grasslands of a long-term, large-scale, biodiversity experiment with varying plant species (1-60 species) and plant functional group diversity (1-4 groups). To estimate pathogen infection of the plant communities, we visually assessed pathogen-group presence (i.e., rusts, powdery mildews, downy mildews, smuts, and leaf-spot diseases) and overall infection levels (combining incidence and severity of each pathogen group) in 82 experimental plots on all aboveground organs of all plant species per plot during four surveys in 2006. Pathogen diversity, assessed as the cumulative number of pathogen groups on all plant species per plot, increased log-linearly with plant species diversity. However, pathogen incidence and severity, and hence overall infection, decreased with increasing plant species diversity. In addition, co-infection of plant individuals by two or more pathogen groups was less likely with increasing plant community diversity. We conclude that plant community diversity promotes pathogen-community diversity while at the same time reducing pathogen infection levels of plant individuals.}, language = {en} } @misc{SchmidtWalzJonesetal.2016, author = {Schmidt, Katja and Walz, Ariane and Jones, Isobel and Metzger, Marc J.}, title = {The sociocultural value of upland regions in the vicinity of cities in comparison with urban green spaces}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {920}, issn = {1866-8372}, doi = {10.25932/publishup-44201}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-442010}, pages = {465 -- 474}, year = {2016}, abstract = {Mountain and upland regions provide a wide range of ecosystem services to residents and visitors. While ecosystem research in mountain regions is on the rise, the linkages between sociocultural benefits and ecological systems remain little explored. Mountainous regions close to urban areas provide numerous benefits to a large number of individuals, suggesting a high social value, particularly for cultural ecosystem services. We explored and compared visitors' valuation of ecosystem services in the Pentland Hills, an upland range close to the city of Edinburgh, Scotland, and urban green spaces within Edinburgh. Based on 715 responses to user surveys in both study areas, we identified intense use and high social value for both areas. Several ecosystem services were perceived as equally important in both areas, including many cultural ecosystem services. Significant differences were revealed in the value of physically using nature, which Pentland Hills users rated more highly than those in the urban green spaces, and of mitigation of pollutants and carbon sequestration, for which the urban green spaces were valued more highly. Major differences were further identified for preferences in future land management, with nature-oriented management preferred by about 57\% of the interviewees in the Pentland Hills, compared to 31\% in the urban parks. The study highlights the substantial value of upland areas in close vicinity to a city for physically using and experiencing nature, with a strong acceptance of nature conservation.}, language = {en} }