@article{BalischewskiChoiBehrensetal.2021, author = {Balischewski, Christian and Choi, Hyung-Seok and Behrens, Karsten and Beqiraj, Alkit and K{\"o}rzd{\"o}rfer, Thomas and Gessner, Andre and Wedel, Armin and Taubert, Andreas}, title = {Metal sulfide nanoparticle synthesis with ionic liquids state of the art and future perspectives}, series = {ChemistryOpen}, volume = {10}, journal = {ChemistryOpen}, number = {2}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2191-1363}, doi = {10.1002/open.202000357}, pages = {272 -- 295}, year = {2021}, abstract = {Metal sulfides are among the most promising materials for a wide variety of technologically relevant applications ranging from energy to environment and beyond. Incidentally, ionic liquids (ILs) have been among the top research subjects for the same applications and also for inorganic materials synthesis. As a result, the exploitation of the peculiar properties of ILs for metal sulfide synthesis could provide attractive new avenues for the generation of new, highly specific metal sulfides for numerous applications. This article therefore describes current developments in metal sulfide nano-particle synthesis as exemplified by a number of highlight examples. Moreover, the article demonstrates how ILs have been used in metal sulfide synthesis and discusses the benefits of using ILs over more traditional approaches. Finally, the article demonstrates some technological challenges and how ILs could be used to further advance the production and specific property engineering of metal sulfide nanomaterials, again based on a number of selected examples.}, language = {en} } @article{Grebenkov2022, author = {Grebenkov, Denis S.}, title = {An encounter-based approach for restricted diffusion with a gradient drift}, series = {Journal of physics : A, Mathematical and theoretical}, volume = {55}, journal = {Journal of physics : A, Mathematical and theoretical}, number = {4}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1751-8113}, doi = {10.1088/1751-8121/ac411a}, pages = {34}, year = {2022}, abstract = {We develop an encounter-based approach for describing restricted diffusion with a gradient drift toward a partially reactive boundary. For this purpose, we introduce an extension of the Dirichlet-to-Neumann operator and use its eigenbasis to derive a spectral decomposition for the full propagator, i.e. the joint probability density function for the particle position and its boundary local time. This is the central quantity that determines various characteristics of diffusion-influenced reactions such as conventional propagators, survival probability, first-passage time distribution, boundary local time distribution, and reaction rate. As an illustration, we investigate the impact of a constant drift onto the boundary local time for restricted diffusion on an interval. More generally, this approach accesses how external forces may influence the statistics of encounters of a diffusing particle with the reactive boundary.}, language = {en} } @phdthesis{Karras2018, author = {Karras, Manfred}, title = {Synthesis of enantiomerically pure helical aromatics such as NHC ligands and their use in asymmetric catalysis}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-421497}, school = {Universit{\"a}t Potsdam}, pages = {121}, year = {2018}, abstract = {Diese Arbeit besch{\"a}ftigt sich mit der enantiomerenreinen Synthese helikaler, aromatischer Verbindungen. Verschiedene Verbindungen dieses Typs wurden erfolgreich hergestellt und charakterisiert. Desweiteren wurden einige der neuen Verbindungen in {\"U}bergangsmetallkomplexe eingebaut und diese dann als Katalysatoren f{\"u}r Metathese und Kreuzkupplungen getestet. Einer der getesteten Katalysatoren zeigte vielversprechende Ergebnisse in der asymmetrischen Olefinmetathese. Die Struktur des neuen Katalysators wurde untersucht. Anhand der Struktur des neuen Katalysators wurden R{\"u}ckschl{\"u}sse auf einen m{\"o}glichen Mechanismus gezogen.}, language = {en} } @phdthesis{Lama2018, author = {Lama, Sandy M. G.}, title = {Functionalization of Porous Carbon Materials with Heteroatoms and Application as Supports in Industrial Heterogeneous Catalysis}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-415797}, school = {Universit{\"a}t Potsdam}, pages = {124}, year = {2018}, abstract = {Due to a challenging population growth and environmental changes, a need for new routes to provide required chemicals for human necessities arises. An effective solution discussed in this thesis is industrial heterogeneous catalysis. The development of an advanced industrial heterogeneous catalyst is investigated herein by considering porous carbon nano-material as supports and modifying their surface chemistry structure with heteroatoms. Such modifications showed a significant influence on the performance of the catalyst and provided a deeper insight regarding the interaction between the surface structure of the catalyst and the surrounding phase. This thesis contributes to the few present studies about heteroatoms effect on the catalyst performance and emphasizes on the importance of understanding surface structure functionalization in a catalyst in different phases (liquid and gaseous) and for different reactions (hydrogenolysis, oxidation, and hydrogenation/ polymerization). Herein, the heteroatoms utilized for the modifications are hydrogen (H), oxygen (O), and nitrogen (N). The heteroatoms effect on the metal particle size, on the polarity of the support/ the catalyst, on the catalytic performance (activity, selectivity, and stability), and on the interaction with the surrounding phase has been explored. First hierarchical porous carbon nanomaterials functionalized with heteroatoms (N) is synthesized and applied as supports for nickel nanoparticles for hydrogenolysis process of kraft lignin in liquid phase. This reaction has been performed in batch and flow reactors for three different catalysts, two of comparable hierarchical porosity, yet one is modified with N and the other is not, and a third is a prepared catalyst from a commercial carbon support. The reaction production and analyses show that the catalysts with hierarchical porosity perform catalytically much better than in presence of a commercial carbon support with lower surface area. Moreover, the modification with N-heteroatoms enhanced the catalytic performance because the heteroatom modified porous carbon material with nickel nanoparticles catalyst (Ni-NDC) performed highest among the other catalysts. In the flow reactor, Ni-NDC selectively degraded the ether bonds (β-O-4) in kraft lignin with an activity of 2.2 x10^-4 mg lignin mg Ni-1 s-1 for 50 h at 350°C and 3.5 mL min-1 flow, providing ~99 \% conversion to shorter chained chemicals (mainly guaiacol derivatives). Then, the functionalization of carbon surface was further studied in selective oxidation of glucose to gluconic acid using < 1 wt. \% of gold (Au) deposited on the previously-mentioned synthesized carbon (C) supports with different functionalities (Au-CGlucose, Au-CGlucose-H, Au-CGlucose-O, Au-CGlucoseamine). Except for Au-CGlucose-O, the other catalysts achieved full glucose conversion within 40-120 min and 100\% selectivity towards gluconic acid with a maximum activity of 1.5 molGlucose molAu-1 s-1 in an aqueous phase at 45 °C and pH 9. Each heteroatom influenced the polarity of the carbon differently, affecting by that the deposition of Au on the support and thus the activity of the catalyst and its selectivity. The heteroatom effect was further investigated in a gas phase. The Fischer-Tropsch reaction was applied to convert synthetic gas (CO and H2) to short olefins and paraffins using surface-functionalized carbon nanotubes (CNTs) with heteroatoms as supports for ion (Fe) deposition in presence and absence of promoters (Na and S). The results showed the promoted Fe-CNT doped with nitrogen catalyst to be stable up to 180 h and selective to the formation of olefins (~ 47 \%) and paraffins (~6 \%) with a conversion of CO ~ 92 \% at a maximum activity of 94 *10^-5 mol CO g Fe-1 s-1. The more information given regarding this topic can open wide range of applications not only in catalysis, but in other approaches as well. In conclusion, incorporation of heteroatoms can be the next approach for an advanced industrial heterogeneous catalyst, but also for other applications (e.g. electrocatalysis, gas adsorption, or supercapacitors).}, language = {en} } @phdthesis{Lettau2007, author = {Lettau, Kristian}, title = {Katalytische molekular gepr{\"a}gte Polymere : Herstellung und Anwendung in einem Thermistor}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-14804}, school = {Universit{\"a}t Potsdam}, year = {2007}, abstract = {Biomakromolek{\"u}le sind in der Natur f{\"u}r viele Abl{\"a}ufe in lebenden Organismen verantwortlich. Dies reicht vom Aufbau der extrazellul{\"a}ren Matrix und dem Cytoskelett {\"u}ber die Erkennung von Botenstoffen durch Rezeptoren bis hin zur Katalyse der verschiedensten Reaktionen in den Zellen selbst. Diese Aufgaben werden zum gr{\"o}ßten Teil von Proteinen {\"u}bernommen, und besonders das spezifische Erkennen der Interaktionspartner ist f{\"u}r alle diese Molek{\"u}le {\"a}ußerst wichtig, um eine fehlerfreie Funktion zu gew{\"a}hrleisten. Als Alternative zur evolutiven Erzeugung von optimalen Bindern und Katalysatoren auf der Basis von Aminos{\"a}uren und Nukleotiden wurden von Wulff, Shea und Mosbach synthetische molekular gepr{\"a}gte Polymere (molecularly imprinted polymers, MIPs) konzipiert. Das Prinzip dieser k{\"u}nstlichen Erkennungselemente beruht auf der Tatsache, dass sich funktionelle Monomere spezifisch um eine Schablone (Templat) anordnen. Werden diese Monomere dann vernetzend polymerisiert, entsteht ein Polymer mit molekularen Kavit{\"a}ten, in denen die Funktionalit{\"a}ten komplement{\"a}r zum Templat fixiert sind. Dadurch ist die selektive Bindung des Templats in diese Kavit{\"a}ten m{\"o}glich. Aufgrund ihrer hohen chemischen und thermischen Stabilit{\"a}t und ihrer geringen Kosten haben "bio-inspirierte" molekular gepr{\"a}gte Polymere das Potential, biologische Erkennungselemente in der Affinit{\"a}tschromatographie sowie in Biosensoren und Biochips zu ersetzen. Trotz einiger publizierter Sensorkonfigurationen steht der große Durchbruch noch aus. Ein Hindernis f{\"u}r Routineanwendungen ist die Signalgenerierung bei Bindung des Analyten an das Polymer. Eine M{\"o}glichkeit f{\"u}r die markerfreie Detektion ist die Benutzung von Kalorimetern, die Bindungs- oder Reaktionsw{\"a}rmen direkt messen k{\"o}nnen. In der Enzymtechnologie wird der Enzym-Thermistor f{\"u}r diesen Zweck eingesetzt, da enzymatische Reaktionen eine Enthalpie in einer Gr{\"o}ßenordnung von 5 - 100 kJ/mol besitzen. In dieser Arbeit wird die Herstellung von katalytisch gepr{\"a}gten Polymeren nach dem Verfahren des Oberfl{\"a}chenpr{\"a}gens erstmalig beschrieben. Die Methode zur Immobilisierung des Templats auf der Oberfl{\"a}che von por{\"o}sem Kieselgel sowie die Polymerzusammensetzung wurden optimiert. Weiter wird die Evaluation der katalytischen Eigenschaften {\"u}ber einen optischen Test, sowie das erste Mal die Kombination eines kalorimetrischen Transduktors - des Thermistors - mit der Analyterkennung durch ein katalytisch aktives MIP gezeigt. Bei diesen Messungen konnte zum ersten Mal gleichzeitig die Bindung/Desorption, sowie die katalytische Umwandlung des Substrats durch konzentrationsabh{\"a}ngige W{\"a}rmesignale nachgewiesen werden.}, language = {de} } @article{QinOschatz2020, author = {Qin, Qing and Oschatz, Martin}, title = {Overcoming chemical inertness under ambient conditions}, series = {ChemElectroChem}, volume = {7}, journal = {ChemElectroChem}, number = {4}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2196-0216}, doi = {10.1002/celc.201901970}, pages = {878 -- 889}, year = {2020}, abstract = {Ammonia (NH3) synthesis by the electrochemical N-2 reduction reaction (NRR) is increasingly studied and proposed as an alternative process to overcome the disadvantages of Haber-Bosch synthesis by a more energy-efficient, carbon-free, delocalized, and sustainable process. An ever-increasing number of scientists are working on the improvement of the faradaic efficiency (FE) and NH3 production rate by developing novel catalysts, electrolyte concepts, and/or by contributing theoretical studies. The present Minireview provides a critical view on the interplay of different crucial aspects in NRR from the electrolyte, over the mechanism of catalytic activation of N-2, to the full electrochemical cell. Five critical questions are asked, discussed, and answered, each coupled with a summary of recent developments in the respective field. This article is not supposed to be a complete summary of recent research about NRR but provides a rather critical personal view on the field. It is the major aim to give an overview over crucial influences on different length scales to shine light on the sweet spots into which room for revolutionary instead of incremental improvements may exist.}, language = {en} } @article{SarhanKoopmanSchuetzetal.2019, author = {Sarhan, Radwan Mohamed and Koopman, Wouter-Willem Adriaan and Schuetz, Roman and Schmid, Thomas and Liebig, Ferenc and Koetz, Joachim and Bargheer, Matias}, title = {The importance of plasmonic heating for the plasmondriven photodimerization of 4-nitrothiophenol}, series = {Scientific Reports}, volume = {9}, journal = {Scientific Reports}, publisher = {Macmillan Publishers Limited}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-019-38627-2}, pages = {8}, year = {2019}, abstract = {Metal nanoparticles form potent nanoreactors, driven by the optical generation of energetic electrons and nanoscale heat. The relative influence of these two factors on nanoscale chemistry is strongly debated. This article discusses the temperature dependence of the dimerization of 4-nitrothiophenol (4-NTP) into 4,4′-dimercaptoazobenzene (DMAB) adsorbed on gold nanoflowers by Surface-Enhanced Raman Scattering (SERS). Raman thermometry shows a significant optical heating of the particles. The ratio of the Stokes and the anti-Stokes Raman signal moreover demonstrates that the molecular temperature during the reaction rises beyond the average crystal lattice temperature of the plasmonic particles. The product bands have an even higher temperature than reactant bands, which suggests that the reaction proceeds preferentially at thermal hot spots. In addition, kinetic measurements of the reaction during external heating of the reaction environment yield a considerable rise of the reaction rate with temperature. Despite this significant heating effects, a comparison of SERS spectra recorded after heating the sample by an external heater to spectra recorded after prolonged illumination shows that the reaction is strictly photo-driven. While in both cases the temperature increase is comparable, the dimerization occurs only in the presence of light. Intensity dependent measurements at fixed temperatures confirm this finding.}, language = {en} } @misc{SarhanKoopmanSchuetzetal.2018, author = {Sarhan, Radwan Mohamed and Koopman, Wouter-Willem Adriaan and Schuetz, Roman and Schmid, Thomas and Liebig, Ferenc and Koetz, Joachim and Bargheer, Matias}, title = {The importance of plasmonic heating for the plasmondriven photodimerization of 4-nitrothiophenol}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {698}, issn = {1866-8372}, doi = {10.25932/publishup-42719}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-427197}, pages = {8}, year = {2018}, abstract = {Metal nanoparticles form potent nanoreactors, driven by the optical generation of energetic electrons and nanoscale heat. The relative influence of these two factors on nanoscale chemistry is strongly debated. This article discusses the temperature dependence of the dimerization of 4-nitrothiophenol (4-NTP) into 4,4′-dimercaptoazobenzene (DMAB) adsorbed on gold nanoflowers by Surface-Enhanced Raman Scattering (SERS). Raman thermometry shows a significant optical heating of the particles. The ratio of the Stokes and the anti-Stokes Raman signal moreover demonstrates that the molecular temperature during the reaction rises beyond the average crystal lattice temperature of the plasmonic particles. The product bands have an even higher temperature than reactant bands, which suggests that the reaction proceeds preferentially at thermal hot spots. In addition, kinetic measurements of the reaction during external heating of the reaction environment yield a considerable rise of the reaction rate with temperature. Despite this significant heating effects, a comparison of SERS spectra recorded after heating the sample by an external heater to spectra recorded after prolonged illumination shows that the reaction is strictly photo-driven. While in both cases the temperature increase is comparable, the dimerization occurs only in the presence of light. Intensity dependent measurements at fixed temperatures confirm this finding.}, language = {en} } @article{SorgenfreiGiangrisostomiJayetal.2021, author = {Sorgenfrei, Nomi and Giangrisostomi, Erika and Jay, Raphael Martin and K{\"u}hn, Danilo and Neppl, Stefan and Ovsyannikov, Ruslan and Sezen, Hikmet and Svensson, Svante and F{\"o}hlisch, Alexander}, title = {Photodriven transient picosecond top-layer semiconductor to metal phase-transition in p-doped molybdenum disulfide}, series = {Advanced materials}, volume = {33}, journal = {Advanced materials}, number = {14}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0935-9648}, doi = {10.1002/adma.202006957}, pages = {8}, year = {2021}, abstract = {Visible light is shown to create a transient metallic S-Mo-S surface layer on bulk semiconducting p-doped indirect-bandgap 2H-MoS2. Optically created electron-hole pairs separate in the surface band bending region of the p-doped semiconducting crystal causing a transient accumulation of electrons in the surface region. This triggers a reversible 2H-semiconductor to 1T-metal phase-transition of the surface layer. Electron-phonon coupling of the indirect-bandgap p-doped 2H-MoS2 enables this efficient pathway even at a low density of excited electrons with a distinct optical excitation threshold and saturation behavior. This mechanism needs to be taken into consideration when describing the surface properties of illuminated p-doped 2H-MoS2. In particular, light-induced increased charge mobility and surface activation can cause and enhance the photocatalytic and photoassisted electrochemical hydrogen evolution reaction of water on 2H-MoS2. Generally, it opens up for a way to control not only the surface of p-doped 2H-MoS2 but also related dichalcogenides and layered systems. The findings are based on the sensitivity of time-resolved electron spectroscopy for chemical analysis with photon-energy-tuneable synchrotron radiation.}, language = {en} } @misc{YarmanScheller2020, author = {Yarman, Aysu and Scheller, Frieder W.}, title = {How reliable is the electrochemical readout of MIP sensors?}, series = {Sensors}, volume = {20}, journal = {Sensors}, number = {9}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s20092677}, pages = {23}, year = {2020}, abstract = {Electrochemical methods offer the simple characterization of the synthesis of molecularly imprinted polymers (MIPs) and the readouts of target binding. The binding of electroinactive analytes can be detected indirectly by their modulating effect on the diffusional permeability of a redox marker through thin MIP films. However, this process generates an overall signal, which may include nonspecific interactions with the nonimprinted surface and adsorption at the electrode surface in addition to (specific) binding to the cavities. Redox-active low-molecular-weight targets and metalloproteins enable a more specific direct quantification of their binding to MIPs by measuring the faradaic current. The in situ characterization of enzymes, MIP-based mimics of redox enzymes or enzyme-labeled targets, is based on the indication of an electroactive product. This approach allows the determination of both the activity of the bio(mimetic) catalyst and of the substrate concentration.}, language = {en} }