@misc{KleinRosenberger2018, author = {Klein, Markus and Rosenberger, Elke}, title = {The tunneling effect for a class of difference operators}, series = {Reviews in Mathematical Physics}, volume = {30}, journal = {Reviews in Mathematical Physics}, number = {4}, publisher = {World Scientific}, address = {Singapore}, issn = {0129-055X}, doi = {10.1142/S0129055X18300029}, pages = {42}, year = {2018}, abstract = {We analyze a general class of self-adjoint difference operators H-epsilon = T-epsilon + V-epsilon on l(2)((epsilon Z)(d)), where V-epsilon is a multi-well potential and v(epsilon) is a small parameter. We give a coherent review of our results on tunneling up to new sharp results on the level of complete asymptotic expansions (see [30-35]). Our emphasis is on general ideas and strategy, possibly of interest for a broader range of readers, and less on detailed mathematical proofs. The wells are decoupled by introducing certain Dirichlet operators on regions containing only one potential well. Then the eigenvalue problem for the Hamiltonian H-epsilon is treated as a small perturbation of these comparison problems. After constructing a Finslerian distance d induced by H-epsilon, we show that Dirichlet eigenfunctions decay exponentially with a rate controlled by this distance to the well. It follows with microlocal techniques that the first n eigenvalues of H-epsilon converge to the first n eigenvalues of the direct sum of harmonic oscillators on R-d located at several wells. In a neighborhood of one well, we construct formal asymptotic expansions of WKB-type for eigenfunctions associated with the low-lying eigenvalues of H-epsilon. These are obtained from eigenfunctions or quasimodes for the operator H-epsilon acting on L-2(R-d), via restriction to the lattice (epsilon Z)(d). Tunneling is then described by a certain interaction matrix, similar to the analysis for the Schrodinger operator (see [22]), the remainder is exponentially small and roughly quadratic compared with the interaction matrix. We give weighted l(2)-estimates for the difference of eigenfunctions of Dirichlet-operators in neighborhoods of the different wells and the associated WKB-expansions at the wells. In the last step, we derive full asymptotic expansions for interactions between two "wells" (minima) of the potential energy, in particular for the discrete tunneling effect. Here we essentially use analysis on phase space, complexified in the momentum variable. These results are as sharp as the classical results for the Schrodinger operator in [22].}, language = {en} } @phdthesis{Ludewig2016, author = {Ludewig, Matthias}, title = {Path integrals on manifolds with boundary and their asymptotic expansions}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-94387}, school = {Universit{\"a}t Potsdam}, pages = {146}, year = {2016}, abstract = {It is "scientific folklore" coming from physical heuristics that solutions to the heat equation on a Riemannian manifold can be represented by a path integral. However, the problem with such path integrals is that they are notoriously ill-defined. One way to make them rigorous (which is often applied in physics) is finite-dimensional approximation, or time-slicing approximation: Given a fine partition of the time interval into small subintervals, one restricts the integration domain to paths that are geodesic on each subinterval of the partition. These finite-dimensional integrals are well-defined, and the (infinite-dimensional) path integral then is defined as the limit of these (suitably normalized) integrals, as the mesh of the partition tends to zero. In this thesis, we show that indeed, solutions to the heat equation on a general compact Riemannian manifold with boundary are given by such time-slicing path integrals. Here we consider the heat equation for general Laplace type operators, acting on sections of a vector bundle. We also obtain similar results for the heat kernel, although in this case, one has to restrict to metrics satisfying a certain smoothness condition at the boundary. One of the most important manipulations one would like to do with path integrals is taking their asymptotic expansions; in the case of the heat kernel, this is the short time asymptotic expansion. In order to use time-slicing approximation here, one needs the approximation to be uniform in the time parameter. We show that this is possible by giving strong error estimates. Finally, we apply these results to obtain short time asymptotic expansions of the heat kernel also in degenerate cases (i.e. at the cut locus). Furthermore, our results allow to relate the asymptotic expansion of the heat kernel to a formal asymptotic expansion of the infinite-dimensional path integral, which gives relations between geometric quantities on the manifold and on the loop space. In particular, we show that the lowest order term in the asymptotic expansion of the heat kernel is essentially given by the Fredholm determinant of the Hessian of the energy functional. We also investigate how this relates to the zeta-regularized determinant of the Jacobi operator along minimizing geodesics.}, language = {en} } @unpublished{LyTarkhanov2015, author = {Ly, Ibrahim and Tarkhanov, Nikolai Nikolaevich}, title = {Asymptotic expansions at nonsymmetric cuspidal points}, volume = {4}, number = {7}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {2193-6943}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-78199}, pages = {11}, year = {2015}, abstract = {We study asymptotics of solutions to the Dirichlet problem in a domain whose boundary contains a nonsymmetric conical point. We establish a complete asymptotic expansion of solutions near the singular point.}, language = {en} }