@phdthesis{Feldmeier2001, author = {Feldmeier, Achim}, title = {Hydrodynamics of astrophysical winds driven by scattering in spectral lines}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0000388}, school = {Universit{\"a}t Potsdam}, year = {2001}, abstract = {Liniengetriebene Winde werden durch Impuls{\"u}bertrag von Photonen auf ein Plasma bei Absorption oder Streuung in zahlreichen Spektrallinien beschleunigt. Dieser Prozess ist besonders effizient f{\"u}r ultraviolette Strahlung und Plasmatemperaturen zwischen 10^4 K und 10^5 K. Zu den astronomischen Objekten mit liniengetriebenen Winden geh{\"o}ren Sterne der Spektraltypen O, B und A, Wolf-Rayet-Sterne sowie Akkretionsscheiben verschiedenster Gr{\"o}ßenordnung, von Scheiben um junge Sterne und in kataklysmischen Ver{\"a}nderlichen bis zu Quasarscheiben. Es ist bislang nicht m{\"o}glich, das vollst{\"a}ndige Windproblem numerisch zu l{\"o}sen, also die Hydrodynamik, den Strahlungstransport und das statistische Gleichgewicht dieser Str{\"o}mungen gleichzeitig zu behandeln. Die Betonung liegt in dieser Arbeit auf der Windhydrodynamik, mit starken Vereinfachungen in den beiden anderen Gebieten. Wegen pers{\"o}nlicher Beteiligung betrachte ich drei Themen im Detail. 1. Windinstabilit{\"a}t durch Dopplerde-shadowing des Gases. Die Instabilit{\"a}t bewirkt, dass Windgas in dichte Schalen komprimiert wird, die von starken Stoßfronten begrenzt sind. Schnelle Wolken entstehen im Raum zwischen den Schalen und stoßen mit diesen zusammen. Dies erzeugt R{\"o}ntgenflashes, die die beobachtete R{\"o}ntgenstrahlung heißer Sterne erkl{\"a}ren k{\"o}nnen. 2. Wind runway durch radiative Wellen. Der runaway zeigt, warum beobachtete liniengetriebene Winde schnelle, kritische L{\"o}sungen anstelle von Brisenl{\"o}sungen (oder shallow solutions) annehmen. Unter bestimmten Bedingungen stabilisiert der Wind sich auf masse{\"u}berladenen L{\"o}sungen, mit einem breiten, abbremsenden Bereich und Knicken im Geschwindigkeitsfeld. 3. Magnetische Winde von Akkretionsscheiben um Sterne oder in aktiven Galaxienzentren. Die Linienbeschleunigung wird hier durch die Zentrifugalkraft entlang korotierender poloidaler Magnetfelder und die Lorentzkraft aufgrund von Gradienten im toroidalen Feld unterst{\"u}tzt. Ein Wirbelblatt, das am inneren Scheibenrand beginnt, kann zu stark erh{\"o}hten Massenverlustraten f{\"u}hren.}, language = {en} } @phdthesis{Hutter2014, author = {Hutter, Anne}, title = {Unveiling the epoch of reionization by simulations and high-redshift galaxies}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-76998}, school = {Universit{\"a}t Potsdam}, pages = {vi, 155}, year = {2014}, abstract = {The Epoch of Reionization marks after recombination the second major change in the ionization state of the universe, going from a neutral to an ionized state. It starts with the appearance of the first stars and galaxies; a fraction of high-energy photons emitted from galaxies permeate into the intergalactic medium (IGM) and gradually ionize the hydrogen, until the IGM is completely ionized at z~6 (Fan et al., 2006). While the progress of reionization is driven by galaxy evolution, it changes the ionization and thermal state of the IGM substantially and affects subsequent structure and galaxy formation by various feedback mechanisms. Understanding this interaction between reionization and galaxy formation is further impeded by a lack of understanding of the high-redshift galactic properties such as the dust distribution and the escape fraction of ionizing photons. Lyman Alpha Emitters (LAEs) represent a sample of high-redshift galaxies that are sensitive to all these galactic properties and the effects of reionization. In this thesis we aim to understand the progress of reionization by performing cosmological simulations, which allows us to investigate the limits of constraining reionization by high-redshift galaxies as LAEs, and examine how galactic properties and the ionization state of the IGM affect the visibility and observed quantities of LAEs and Lyman Break galaxies (LBGs). In the first part of this thesis we focus on performing radiative transfer calculations to simulate reionization. We have developed a mapping-sphere-scheme, which, starting from spherically averaged temperature and density fields, uses our 1D radiative transfer code and computes the effect of each source on the IGM temperature and ionization (HII, HeII, HeIII) profiles, which are subsequently mapped onto a grid. Furthermore we have updated the 3D Monte-Carlo radiative transfer pCRASH, enabling detailed reionization simulations which take individual source characteristics into account. In the second part of this thesis we perform a reionization simulation by post-processing a smoothed-particle hydrodynamical (SPH) simulation (GADGET-2) with 3D radiative transfer (pCRASH), where the ionizing sources are modelled according to the characteristics of the stellar populations in the hydrodynamical simulation. Following the ionization fractions of hydrogen (HI) and helium (HeII, HeIII), and temperature in our simulation, we find that reionization starts at z~11 and ends at z~6, and high density regions near sources are ionized earlier than low density regions far from sources. In the third part of this thesis we couple the cosmological SPH simulation and the radiative transfer simulations with a physically motivated, self-consistent model for LAEs, in order to understand the importance of the ionization state of the IGM, the escape fraction of ionizing photons from galaxies and dust in the interstellar medium (ISM) on the visibility of LAEs. Comparison of our models results with the LAE Lyman Alpha (Lya) and UV luminosity functions at z~6.6 reveals a three-dimensional degeneracy between the ionization state of the IGM, the ionizing photons escape fraction and the ISM dust distribution, which implies that LAEs act not only as tracers of reionization but also of the ionizing photon escape fraction and of the ISM dust distribution. This degeneracy does not even break down when we compare simulated with observed clustering of LAEs at z~6.6. However, our results show that reionization has the largest impact on the amplitude of the LAE angular correlation functions, and its imprints are clearly distinguishable from those of properties on galactic scales. These results show that reionization cannot be constrained tightly by exclusively using LAE observations. Further observational constraints, e.g. tomographies of the redshifted hydrogen 21cm line, are required. In addition we also use our LAE model to probe the question when a galaxy is visible as a LAE or a LBG. Within our model galaxies above a critical stellar mass can produce enough luminosity to be visible as a LBG and/or a LAE. By finding an increasing duty cycle of LBGs with Lya emission as the UV magnitude or stellar mass of the galaxy rises, our model reveals that the brightest (and most massive) LBGs most often show Lya emission. Predicting the Lya equivalent width (Lya EW) distribution and the fraction of LBGs showing Lya emission at z~6.6, we reproduce the observational trend of the Lya EWs with UV magnitude. However, the Lya EWs of the UV brightest LBGs exceed observations and can only be reconciled by accounting for an increased Lya attenuation of massive galaxies, which implies that the observed Lya brightest LAEs do not necessarily coincide with the UV brightest galaxies. We have analysed the dependencies of LAE observables on the properties of the galactic and intergalactic medium and the LAE-LBG connection, and this enhances our understanding of the nature of LAEs.}, language = {en} } @phdthesis{Kappel2015, author = {Kappel, David}, title = {Multi-spectrum retrieval of maps of Venus' surface emissivity in the infrared}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-85301}, school = {Universit{\"a}t Potsdam}, pages = {xix, 226}, year = {2015}, abstract = {The main goal of this cumulative thesis is the derivation of surface emissivity data in the infrared from radiance measurements of Venus. Since these data are diagnostic of the chemical composition and grain size of the surface material, they can help to improve knowledge of the planet's geology. Spectrally resolved images of nightside emissions in the range 1.0-5.1 μm were recently acquired by the InfraRed Mapping channel of the Visible and InfraRed Thermal Imaging Spectrometer (VIRTIS-M-IR) aboard ESA's Venus EXpress (VEX). Surface and deep atmospheric thermal emissions in this spectral range are strongly obscured by the extremely opaque atmosphere, but three narrow spectral windows at 1.02, 1.10, and 1.18 μm allow the sounding of the surface. Additional windows between 1.3 and 2.6 μm provide information on atmospheric parameters that is required to interpret the surface signals. Quantitative data on surface and atmosphere can be retrieved from the measured spectra by comparing them to simulated spectra. A numerical radiative transfer model is used in this work to simulate the observable radiation as a function of atmospheric, surface, and instrumental parameters. It is a line-by-line model taking into account thermal emissions by surface and atmosphere as well as absorption and multiple scattering by gases and clouds. The VIRTIS-M-IR measurements are first preprocessed to obtain an optimal data basis for the subsequent steps. In this process, a detailed detector responsivity analysis enables the optimization of the data consistency. The measurement data have a relatively low spectral information content, and different parameter vectors can describe the same measured spectrum equally well. A usual method to regularize the retrieval of the wanted parameters from a measured spectrum is to take into account a priori mean values and standard deviations of the parameters to be retrieved. This decreases the probability to obtain unreasonable parameter values. The multi-spectrum retrieval algorithm MSR is developed to additionally consider physically realistic spatial and temporal a priori correlations between retrieval parameters describing different measurements. Neglecting geologic activity, MSR also allows the retrieval of an emissivity map as a parameter vector that is common to several spectrally resolved images that cover the same surface target. Even applying MSR, it is difficult to obtain reliable emissivity maps in absolute values. A detailed retrieval error analysis based on synthetic spectra reveals that this is mainly due to interferences from parameters that cannot be derived from the spectra themselves, but that have to be set to assumed values to enable the radiative transfer simulations. The MSR retrieval of emissivity maps relative to a fixed emissivity is shown to effectively avoid most emissivity retrieval errors. Relative emissivity maps at 1.02, 1.10, and 1.18 μm are finally derived from many VIRTIS-M-IR measurements that cover a surface target at Themis Regio. They are interpreted as spatial variations relative to an assumed emissivity mean of the target. It is verified that the maps are largely independent of the choice of many interfering parameters as well as the utilized measurement data set. These are the first Venus IR emissivity data maps based on a consistent application of a full radiative transfer simulation and a retrieval algorithm that respects a priori information. The maps are sufficiently reliable for future geologic interpretations.}, language = {en} } @phdthesis{Thomas2022, author = {Thomas, Timon}, title = {Cosmic-ray hydrodynamics: theory, numerics, applications}, doi = {10.25932/publishup-56384}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-563843}, school = {Universit{\"a}t Potsdam}, pages = {334}, year = {2022}, abstract = {Cosmic rays (CRs) are a ubiquitous and an important component of astrophysical environments such as the interstellar medium (ISM) and intracluster medium (ICM). Their plasma physical interactions with electromagnetic fields strongly influence their transport properties. Effective models which incorporate the microphysics of CR transport are needed to study the effects of CRs on their surrounding macrophysical media. Developing such models is challenging because of the conceptional, length-scale, and time-scale separation between the microscales of plasma physics and the macroscales of the environment. Hydrodynamical theories of CR transport achieve this by capturing the evolution of CR population in terms of statistical moments. In the well-established one-moment hydrodynamical model for CR transport, the dynamics of the entire CR population are described by a single statistical quantity such as the commonly used CR energy density. In this work, I develop a new hydrodynamical two-moment theory for CR transport that expands the well-established hydrodynamical model by including the CR energy flux as a second independent hydrodynamical quantity. I detail how this model accounts for the interaction between CRs and gyroresonant Alfv{\´e}n waves. The small-scale magnetic fields associated with these Alfv{\´e}n waves scatter CRs which fundamentally alters CR transport along large-scale magnetic field lines. This leads to the effects of CR streaming and diffusion which are both captured within the presented hydrodynamical theory. I use an Eddington-like approximation to close the hydrodynamical equations and investigate the accuracy of this closure-relation by comparing it to high-order approximations of CR transport. In addition, I develop a finite-volume scheme for the new hydrodynamical model and adapt it to the moving-mesh code Arepo. This scheme is applied using a simulation of a CR-driven galactic wind. I investigate how CRs launch the wind and perform a statistical analysis of CR transport properties inside the simulated circumgalactic medium (CGM). I show that the new hydrodynamical model can be used to explain the morphological appearance of a particular type of radio filamentary structures found inside the central molecular zone (CMZ). I argue that these harp-like features are synchrotron-radiating CRs which are injected into braided magnetic field lines by a point-like source such as a stellar wind of a massive star or a pulsar. Lastly, I present the finite-volume code Blinc that uses adaptive mesh refinement (AMR) techniques to perform simulations of radiation and magnetohydrodynamics (MHD). The mesh of Blinc is block-structured and represented in computer memory using a graph-based approach. I describe the implementation of the mesh graph and how a diffusion process is employed to achieve load balancing in parallel computing environments. Various test problems are used to verify the accuracy and robustness of the employed numerical algorithms.}, language = {en} } @inproceedings{OPUS4-1574, title = {Clumping in hot-star winds : proceedings of an international workshop held in Potsdam, Germany, 18. - 22. June 2007}, editor = {Hamann, Wolf-Rainer and Feldmeier, Achim and Oskinova, Lida}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-940793-33-1}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-13981}, pages = {254}, year = {2007}, abstract = {Stellar winds play an important role for the evolution of massive stars and their cosmic environment. Multiple lines of evidence, coming from spectroscopy, polarimetry, variability, stellar ejecta, and hydrodynamic modeling, suggest that stellar winds are non-stationary and inhomogeneous. This is referred to as 'wind clumping'. The urgent need to understand this phenomenon is boosted by its far-reaching implications. Most importantly, all techniques to derive empirical mass-loss rates are more or less corrupted by wind clumping. Consequently, mass-loss rates are extremely uncertain. Within their range of uncertainty, completely different scenarios for the evolution of massive stars are obtained. Settling these questions for Galactic OB, LBV and Wolf-Rayet stars is prerequisite to understanding stellar clusters and galaxies, or predicting the properties of first-generation stars. In order to develop a consistent picture and understanding of clumped stellar winds, an international workshop on 'Clumping in Hot Star Winds' was held in Potsdam, Germany, from 18. - 22. June 2007. About 60 participants, comprising almost all leading experts in the field, gathered for one week of extensive exchange and discussion. The Scientific Organizing Committee (SOC) included John Brown (Glasgow), Joseph Cassinelli (Madison), Paul Crowther (Sheffield), Alex Fullerton (Baltimore), Wolf-Rainer Hamann (Potsdam, chair), Anthony Moffat (Montreal), Stan Owocki (Newark), and Joachim Puls (Munich). These proceedings contain the invited and contributed talks presented at the workshop, and document the extensive discussions.}, language = {en} }