@misc{BordeSmithSutherlandetal.2017, author = {Borde, Ron and Smith, Jordan J. and Sutherland, Rachel and Nathan, Nicole and Lubans, David Revalds}, title = {Methodological considerations and impact of school-based interventions on objectively measured physical activity in adolescents: a systematic review and meta-analysis}, series = {Obesity reviews : an official journal of the International Association for the Study of Obesity}, volume = {18}, journal = {Obesity reviews : an official journal of the International Association for the Study of Obesity}, publisher = {Wiley}, address = {Hoboken}, issn = {1467-7881}, doi = {10.1111/obr.12517}, pages = {476 -- 490}, year = {2017}, abstract = {Objective: The aims of this systematic review and meta-analysis are (i) to determine the impact of school-based interventions on objectively measured physical activity among adolescents and (ii) to examine accelerometer methods and decision rule reporting in previous interventions. Methods: A systematic search was performed to identify randomized controlled trials targeting adolescents (age: >= 10 years), conducted in the school setting, and reporting objectively measured physical activity. Random effects meta-analyses were conducted to determine the pooled effects of previous interventions on total and moderate-to-vigorous physical activity. Potential moderators of intervention effects were also explored. Results: Thirteen articles met the inclusion criteria, and twelve were included in the meta-analysis. The pooled effects were small and non-significant for both total physical activity (standardized mean difference = 0.02 [95\% confidence interval = -0.13 to 0.18]) and moderate-to-vigorous physical activity (standardized mean difference = 0.24 [95\% confidence interval = -0.08 to 0.56]). Sample age and accelerometer compliance were significant moderators for total physical activity, with a younger sample and higher compliance associated with larger effects. Conclusion: Previous school-based physical activity interventions targeting adolescents have been largely unsuccessful, particularly for older adolescents. There is a need for more high-quality research using objective monitoring in this population. Future interventions should comply with best-practice recommendations regarding physical activity monitoring protocols.}, language = {en} } @misc{LesinskiMuehlbauerGranacher2017, author = {Lesinski, Melanie and M{\"u}hlbauer, Thomas and Granacher, Urs}, title = {Concurrent validity of the Gyko inertial sensor system for the assessment of vertical jump height in female sub-elite youth soccer players}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-400967}, pages = {9}, year = {2017}, abstract = {Background: The aim of the present study was to verify concurrent validity of the Gyko inertial sensor system for the assessment of vertical jump height. - Methods: Nineteen female sub-elite youth soccer players (mean age: 14.7 ± 0.6 years) performed three trials of countermovement (CMJ) and squat jumps (SJ), respectively. Maximal vertical jump height was simultaneously quantified with the Gyko system, a Kistler force-plate (i.e., gold standard), and another criterion device that is frequently used in the field, the Optojump system. - Results: Compared to the force-plate, the Gyko system determined significant systematic bias for mean CMJ (-0.66 cm, p < 0.01, d = 1.41) and mean SJ (-0.91 cm, p < 0.01, d = 1.69) height. Random bias was ± 3.2 cm for CMJ and ± 4.0 cm for SJ height and intraclass correlation coefficients (ICCs) were "excellent" (ICC = 0.87 for CMJ and 0.81 for SJ). Compared to the Optojump device, the Gyko system detected a significant systematic bias for mean CMJ (0.55 cm, p < 0.05, d = 0.94) but not for mean SJ (0.39 cm) height. Random bias was ± 3.3 cm for CMJ and ± 4.2 cm for SJ height and ICC values were "excellent" (ICC = 0.86 for CMJ and 0.82 for SJ). - Conclusion: Consequently, apparatus specific regression equations were provided to estimate true vertical jump height for the Kistler force-plate and the Optojump device from Gyko-derived data. Our findings indicate that the Gyko system cannot be used interchangeably with a Kistler force-plate and the Optojump device in trained individuals. It is suggested that practitioners apply the correction equations to estimate vertical jump height for the force-plate and the Optojump system from Gyko-derived data.}, language = {en} }