@article{FiggeDimitrovSchlosseretal.2022, author = {Figge, Frank and Dimitrov, Stanko and Schlosser, Rainer and Chenavaz, Regis}, title = {Does the circular economy fuel the throwaway society? The role of opportunity costs for products that lose value over time}, series = {Journal of cleaner production}, volume = {368}, journal = {Journal of cleaner production}, publisher = {Elsevier}, address = {Oxford}, issn = {0959-6526}, doi = {10.1016/j.jclepro.2022.133207}, pages = {9}, year = {2022}, abstract = {The efficient use of natural resources is considered a necessary condition for their sustainable use. Extending the lifetime of products and using resources circularly are two popular strategies to increase the efficiency of resource use. Both strategies are usually assumed to contribute to the eco-efficiency of resource use independently. We argue that a move to a circular economy creates opportunity costs for consumers holding on to their products, due to the resource embedded in the product. Assuming rational consumers, we develop a model that determines optimal replacement times for products subject to minimizing average costs over time. We find that in a perfectly circular economy, consumers are incentivized to discard their products more quickly than in a perfectly linear economy. A direct consequence of our finding is that extending product use is in direct conflict with closing resource loops in the circular economy. We identify the salvage value of discarded products and technical progress as two factors that determine the impact that closing resource loops has on the duration of product use. The article highlights the risk that closing resource loops and moving to a more circular economy incentivizes more unsustainable behavior.}, language = {en} } @article{HagedornHuegleSchlosser2022, author = {Hagedorn, Christopher and Huegle, Johannes and Schlosser, Rainer}, title = {Understanding unforeseen production downtimes in manufacturing processes using log data-driven causal reasoning}, series = {Journal of intelligent manufacturing}, volume = {33}, journal = {Journal of intelligent manufacturing}, number = {7}, publisher = {Springer}, address = {Dordrecht}, issn = {0956-5515}, doi = {10.1007/s10845-022-01952-x}, pages = {2027 -- 2043}, year = {2022}, abstract = {In discrete manufacturing, the knowledge about causal relationships makes it possible to avoid unforeseen production downtimes by identifying their root causes. Learning causal structures from real-world settings remains challenging due to high-dimensional data, a mix of discrete and continuous variables, and requirements for preprocessing log data under the causal perspective. In our work, we address these challenges proposing a process for causal reasoning based on raw machine log data from production monitoring. Within this process, we define a set of transformation rules to extract independent and identically distributed observations. Further, we incorporate a variable selection step to handle high-dimensionality and a discretization step to include continuous variables. We enrich a commonly used causal structure learning algorithm with domain-related orientation rules, which provides a basis for causal reasoning. We demonstrate the process on a real-world dataset from a globally operating precision mechanical engineering company. The dataset contains over 40 million log data entries from production monitoring of a single machine. In this context, we determine the causal structures embedded in operational processes. Further, we examine causal effects to support machine operators in avoiding unforeseen production stops, i.e., by detaining machine operators from drawing false conclusions on impacting factors of unforeseen production stops based on experience.}, language = {en} } @misc{HalfpapSchlosser2019, author = {Halfpap, Stefan and Schlosser, Rainer}, title = {Workload-Driven Fragment Allocation for Partially Replicated Databases Using Linear Programming}, series = {2019 IEEE 35th International Conference on Data Engineering (ICDE)}, journal = {2019 IEEE 35th International Conference on Data Engineering (ICDE)}, publisher = {IEEE}, address = {New York}, isbn = {978-1-5386-7474-1}, issn = {1084-4627}, doi = {10.1109/ICDE.2019.00188}, pages = {1746 -- 1749}, year = {2019}, abstract = {In replication schemes, replica nodes can process read-only queries on snapshots of the master node without violating transactional consistency. By analyzing the workload, we can identify query access patterns and replicate data depending to its access frequency. In this paper, we define a linear programming (LP) model to calculate the set of partial replicas with the lowest overall memory capacity while evenly balancing the query load. Furthermore, we propose a scalable decomposition heuristic to calculate solutions for larger problem sizes. While guaranteeing the same performance as state-of-the-art heuristics, our decomposition approach calculates allocations with up to 23\% lower memory footprint for the TPC-H benchmark.}, language = {en} } @misc{HalfpapSchlosser2019, author = {Halfpap, Stefan and Schlosser, Rainer}, title = {A Comparison of Allocation Algorithms for Partially Replicated Databases}, series = {2019 IEEE 35th International Conference on Data Engineering (ICDE)}, journal = {2019 IEEE 35th International Conference on Data Engineering (ICDE)}, publisher = {IEEE}, address = {New York}, isbn = {978-1-5386-7474-1}, issn = {1084-4627}, doi = {10.1109/ICDE.2019.00226}, pages = {2008 -- 2011}, year = {2019}, abstract = {Increasing demand for analytical processing capabilities can be managed by replication approaches. However, to evenly balance the replicas' workload shares while at the same time minimizing the data replication factor is a highly challenging allocation problem. As optimal solutions are only applicable for small problem instances, effective heuristics are indispensable. In this paper, we test and compare state-of-the-art allocation algorithms for partial replication. By visualizing and exploring their (heuristic) solutions for different benchmark workloads, we are able to derive structural insights and to detect an algorithm's strengths as well as its potential for improvement. Further, our application enables end-to-end evaluations of different allocations to verify their theoretical performance.}, language = {en} } @article{KastiusSchlosser2022, author = {Kastius, Alexander and Schlosser, Rainer}, title = {Dynamic pricing under competition using reinforcement learning}, series = {Journal of revenue and pricing management}, volume = {21}, journal = {Journal of revenue and pricing management}, number = {1}, publisher = {Springer Nature Switzerland AG}, address = {Cham}, issn = {1476-6930}, doi = {10.1057/s41272-021-00285-3}, pages = {50 -- 63}, year = {2022}, abstract = {Dynamic pricing is considered a possibility to gain an advantage over competitors in modern online markets. The past advancements in Reinforcement Learning (RL) provided more capable algorithms that can be used to solve pricing problems. In this paper, we study the performance of Deep Q-Networks (DQN) and Soft Actor Critic (SAC) in different market models. We consider tractable duopoly settings, where optimal solutions derived by dynamic programming techniques can be used for verification, as well as oligopoly settings, which are usually intractable due to the curse of dimensionality. We find that both algorithms provide reasonable results, while SAC performs better than DQN. Moreover, we show that under certain conditions, RL algorithms can be forced into collusion by their competitors without direct communication.}, language = {en} } @article{KossmannHalfpapJankriftetal.2020, author = {Kossmann, Jan and Halfpap, Stefan and Jankrift, Marcel and Schlosser, Rainer}, title = {Magic mirror in my hand, which is the best in the land?}, series = {Proceedings of the VLDB Endowment}, volume = {13}, journal = {Proceedings of the VLDB Endowment}, number = {11}, publisher = {Association for Computing Machinery}, address = {New York}, issn = {2150-8097}, doi = {10.14778/3407790.3407832}, pages = {2382 -- 2395}, year = {2020}, abstract = {Indexes are essential for the efficient processing of database workloads. Proposed solutions for the relevant and challenging index selection problem range from metadata-based simple heuristics, over sophisticated multi-step algorithms, to approaches that yield optimal results. The main challenges are (i) to accurately determine the effect of an index on the workload cost while considering the interaction of indexes and (ii) a large number of possible combinations resulting from workloads containing many queries and massive schemata with possibly thousands of attributes.
In this work, we describe and analyze eight index selection algorithms that are based on different concepts and compare them along different dimensions, such as solution quality, runtime, multi-column support, solution granularity, and complexity. In particular, we analyze the solutions of the algorithms for the challenging analytical Join Order, TPC-H, and TPC-DS benchmarks. Afterward, we assess strengths and weaknesses, infer insights for index selection in general and each approach individually, before we give recommendations on when to use which approach.}, language = {en} } @article{KossmannSchlosser2020, author = {Kossmann, Jan and Schlosser, Rainer}, title = {Self-driving database systems}, series = {Distributed and parallel databases}, volume = {38}, journal = {Distributed and parallel databases}, number = {4}, publisher = {Springer}, address = {Dordrecht}, issn = {0926-8782}, doi = {10.1007/s10619-020-07288-w}, pages = {795 -- 817}, year = {2020}, abstract = {Challenges for self-driving database systems, which tune their physical design and configuration autonomously, are manifold: Such systems have to anticipate future workloads, find robust configurations efficiently, and incorporate knowledge gained by previous actions into later decisions. We present a component-based framework for self-driving database systems that enables database integration and development of self-managing functionality with low overhead by relying on separation of concerns. By keeping the components of the framework reusable and exchangeable, experiments are simplified, which promotes further research in that area. Moreover, to optimize multiple mutually dependent features, e.g., index selection and compression configurations, we propose a linear programming (LP) based algorithm to derive an efficient tuning order automatically. Afterwards, we demonstrate the applicability and scalability of our approach with reproducible examples.}, language = {en} } @article{PerscheidPlattnerRitteretal.2022, author = {Perscheid, Michael and Plattner, Hasso and Ritter, Daniel and Schlosser, Rainer and Teusner, Ralf}, title = {Enterprise platform and integration concepts research at HPI}, series = {SIGMOD record}, volume = {51}, journal = {SIGMOD record}, number = {4}, publisher = {Association for Computing Machinery}, address = {New York}, issn = {0163-5808}, doi = {10.1145/3582302.3582322}, pages = {68 -- 73}, year = {2022}, abstract = {The Hasso Plattner Institute (HPI), academically structured as the independent Faculty of Digital Engineering at the University of Potsdam, unites computer science research and teaching with the advantages of a privately financed institute and a tuition-free study program. Founder and namesake of the institute is the SAP co-founder Hasso Plattner, who also heads the Enterprise Platform and Integration Concepts (EPIC) research center which focuses on the technical aspects of business software with a vision to provide the fastest way to get insights out of enterprise data. Founded in 2006, the EPIC combines three research groups comprising autonomous data management, enterprise software engineering, and data-driven decision support.}, language = {en} } @misc{RichlyBrauerSchlosser2020, author = {Richly, Keven and Brauer, Janos and Schlosser, Rainer}, title = {Predicting location probabilities of drivers to improved dispatch decisions of transportation network companies based on trajectory data}, series = {Postprints der Universit{\"a}t Potsdam : Reihe der Digital Engineering Fakult{\"a}t}, journal = {Postprints der Universit{\"a}t Potsdam : Reihe der Digital Engineering Fakult{\"a}t}, number = {9}, doi = {10.25932/publishup-52404}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-524040}, pages = {14}, year = {2020}, abstract = {The demand for peer-to-peer ridesharing services increased over the last years rapidly. To cost-efficiently dispatch orders and communicate accurate pick-up times is challenging as the current location of each available driver is not exactly known since observed locations can be outdated for several seconds. The developed trajectory visualization tool enables transportation network companies to analyze dispatch processes and determine the causes of unexpected delays. As dispatching algorithms are based on the accuracy of arrival time predictions, we account for factors like noise, sample rate, technical and economic limitations as well as the duration of the entire process as they have an impact on the accuracy of spatio-temporal data. To improve dispatching strategies, we propose a prediction approach that provides a probability distribution for a driver's future locations based on patterns observed in past trajectories. We demonstrate the capabilities of our prediction results to ( i) avoid critical delays, (ii) to estimate waiting times with higher confidence, and (iii) to enable risk considerations in dispatching strategies.}, language = {en} } @article{RichlyBrauerSchlosser2020, author = {Richly, Keven and Brauer, Janos and Schlosser, Rainer}, title = {Predicting location probabilities of drivers to improved dispatch decisions of transportation network companies based on trajectory data}, series = {Proceedings of the 9th International Conference on Operations Research and Enterprise Systems - ICORES}, journal = {Proceedings of the 9th International Conference on Operations Research and Enterprise Systems - ICORES}, publisher = {Springer}, address = {Berlin}, pages = {12}, year = {2020}, abstract = {The demand for peer-to-peer ridesharing services increased over the last years rapidly. To cost-efficiently dispatch orders and communicate accurate pick-up times is challenging as the current location of each available driver is not exactly known since observed locations can be outdated for several seconds. The developed trajectory visualization tool enables transportation network companies to analyze dispatch processes and determine the causes of unexpected delays. As dispatching algorithms are based on the accuracy of arrival time predictions, we account for factors like noise, sample rate, technical and economic limitations as well as the duration of the entire process as they have an impact on the accuracy of spatio-temporal data. To improve dispatching strategies, we propose a prediction approach that provides a probability distribution for a driver's future locations based on patterns observed in past trajectories. We demonstrate the capabilities of our prediction results to ( i) avoid critical delays, (ii) to estimate waiting times with higher confidence, and (iii) to enable risk considerations in dispatching strategies.}, language = {en} }