@article{RichterBruneRiedletal.2021, author = {Richter, Maximilian and Brune, Sascha and Riedl, Simon and Glerum, Anne and Neuharth, Derek and Strecker, Manfred}, title = {Controls on asymmetric rift dynamics}, series = {Tectonics / American Geophysical Union, AGU ; European Geophysical Society, EGS}, volume = {40}, journal = {Tectonics / American Geophysical Union, AGU ; European Geophysical Society, EGS}, number = {5}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0278-7407}, doi = {10.1029/2020TC006553}, pages = {21}, year = {2021}, abstract = {Complex, time-dependent, and asymmetric rift geometries are observed throughout the East African Rift System (EARS) and are well documented, for instance, in the Kenya Rift. To unravel asymmetric rifting processes in this region, we conduct 2D geodynamic models. We use the finite element software ASPECT employing visco-plastic rheologies, mesh-refinement, distributed random noise seeding, and a free surface. In contrast to many previous numerical modeling studies that aimed at understanding final rifted margin symmetry, we explicitly focus on initial rifting stages to assess geodynamic controls on strain localization and fault evolution. We thereby link to geological and geophysical observations from the Southern and Central Kenya Rift. Our models suggest a three-stage early rift evolution that dynamically bridges previously inferred fault-configuration phases of the eastern EARS branch: (1) accommodation of initial strain localization by a single border fault and flexure of the hanging-wall crust, (2) faulting in the hanging-wall and increasing upper-crustal faulting in the rift-basin center, and (3) loss of pronounced early stage asymmetry prior to basinward localization of deformation. This evolution may provide a template for understanding early extensional faulting in other branches of the East African Rift and in asymmetric rifts worldwide. By modifying the initial random noise distribution that approximates small-scale tectonic inheritance, we show that a spectrum of first-order fault configurations with variable symmetry can be produced in models with an otherwise identical setup. This approach sheds new light on along-strike rift variability controls in active asymmetric rifts and proximal rifted margins.}, language = {en} } @phdthesis{Riedl2021, author = {Riedl, Simon}, title = {Active tectonics in the Kenya Rift}, doi = {10.25932/publishup-53855}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-538552}, school = {Universit{\"a}t Potsdam}, pages = {xi, 207}, year = {2021}, abstract = {Magmatische und tektonisch aktive Grabenzonen (Rifts) stellen die Vorstufen entstehender Plattengrenzen dar. Diese sich spreizenden tektonischen Provinzen zeichnen sich durch allgegenw{\"a}rtige Abschiebungen aus, und die r{\"a}umliche Verteilung, die Geometrie, und das Alter dieser Abschiebungen l{\"a}sst R{\"u}ckschl{\"u}sse auf die r{\"a}umlichen und zeitlichen Zusammenh{\"a}nge zwischen tektonischer Deformation, Magmatismus und langwelliger Krustendeformation in Rifts zu. Diese Arbeit konzentriert sich auf die St{\"o}rungsaktivit{\"a}t im Kenia-Rift des k{\"a}nozoischen Ostafrikanischen Grabensystems im Zeitraum zwischen dem mittleren Pleistoz{\"a}n und dem Holoz{\"a}n. Um die fr{\"u}hen Stadien der Entstehung kontinentaler Plattengrenzen zu untersuchen, wird in dieser Arbeit eine zeitlich gemittelte minimale Extensionsrate f{\"u}r den inneren Graben des N{\"o}rdlichen Kenia-Rifts (NKR) f{\"u}r die letzten 0,5 Mio Jahre abgeleitet. Die Analyse beruht auf Messungen mit Hilfe des digitalen TanDEM-X-H{\"o}henmodells, um die Abschiebungen entlang der vulkanisch-tektonischen Achse des inneren Grabens des NKR zu kartieren und deren Versatzbetr{\"a}ge zu bestimmen. Mithilfe von vorhandenen Geochronologiedaten der deformierten vulkanischen Einheiten sowie in dieser Arbeit erstellten ⁴⁰Ar/³⁹Ar-Datierungen werden zeitlich gemittelte Extensionsraten berechnet. Die Auswertungen zeigen, dass im inneren Graben des NKR die langfristige Extensionsrate f{\"u}r mittelpleistoz{\"a}ne bis rezente St{\"o}rungen Mindestwerte von 1,0 bis 1,6 mm yr⁻¹ aufweist und lokal allerdings auch Werte bis zu 2,0 mm yr⁻¹ existieren. In Anbetracht der nahezu inaktiven Randst{\"o}rungen des NKR zeigt sich somit, dass sich die Extension auf die Region der aktiven vulkanisch-tektonischen Achse im inneren Graben konzentriert und somit ein fortgeschrittenes Stadium kontinentaler Extensionsprozesse im NKR vorliegt. In dieser Arbeit wird diese r{\"a}umlich fokussierte Extension zudem im Rahmen einer St{\"o}rungsanalyse der j{\"u}ngsten vulkanischen Erscheinungen des Kenia-Rifts betrachtet. Die Arbeit analysiert mithilfe von Gel{\"a}ndekartierungen und eines auf Luftbildern basierenden Gel{\"a}ndemodells die St{\"o}rungscharakteristika der etwa 36 tausend Jahre alten Menengai-Kaldera und der umliegenden Gebiete im zentralen Kenia-Rift. Im Allgemeinen sind die holoz{\"a}nen St{\"o}rungen innerhalb des Rifts reine, NNO-streichende Abschiebungen, die somit das gegenw{\"a}rtige tektonische Spannungsfeld wiederspiegeln; innerhalb der Menengai-Kaldera sind die jungen Strukturen jedoch von andauernder magmatischer Aktivit{\"a}t und von Aufdomung {\"u}berpr{\"a}gt. Die Kaldera befindet sich im Zentrum eines sich aktiv dehnenden Riftsegments und zusammen mit den anderen quart{\"a}ren Vulkanen des Kenia-Rifts lassen sich diese Bereiche als Kernpunkte der extensionalen St{\"o}rungsaktivit{\"a}t verstehen, die letztlich zu einer weiter entwickelten Phase magmengest{\"u}tzter Kontinentalseparation f{\"u}hren werden. Die bereits seit dem Terti{\"a}r andauernde St{\"o}rungsaktivit{\"a}t im Kenia-Rift f{\"u}hrt zur Zergliederung der gr{\"o}ßeren Rift-Senken in kleinere Segmente und beeinflusst die Sedimentologie und die Hydrologie dieser Riftbecken. Gegenw{\"a}rtig sind die meisten, durch St{\"o}rungen begrenzten Becken des Kenia-Rifts hydrologisch isoliert, sie waren aber w{\"a}hrend feuchter Klimaphasen hydrologisch miteinander verbunden; in dieser Arbeit untersuche ich deshalb auch diese hydrologische Verbindung der Rift-Becken f{\"u}r die Zeit der Afrikanischen Feuchteperiode des fr{\"u}hen Holoz{\"a}ns. Mithilfe der Analyse von digitalen Gel{\"a}ndemodellen, unter Ber{\"u}cksichtigung von geomorphologischen Anzeigern f{\"u}r Seespiegelhochst{\"a}nde, Radiokarbondatierungen und einer {\"U}bersicht {\"u}ber Fossiliendaten konnten zwei kaskadierende Flusssysteme aus diesen Daten abgeleitet werden: eine Flusskaskade in Richtung S{\"u}den und eine in Richtung Norden. Beide Kaskaden haben die derzeit isolierten Becken w{\"a}hrend des fr{\"u}hen Holoz{\"a}ns durch {\"u}berlaufende Seen und eingeschnittene Schluchten miteinander verbunden. Diese hydrologische Verbindung f{\"u}hrte zu der Ausbreitung aquatischer Fauna entlang des Rifts, und gleichzeitig stellte die Wasserscheide zwischen den beiden Flusssystemen den einzigen terrestrischen Ausbreitungskorridor dar, der eine {\"U}berquerung des Kenia-Rifts erm{\"o}glichte. Diese tektonisch-geomorphologische Rekonstruktion erkl{\"a}rt die heute isolierten Vorkommen nilotischer Fischarten in den Riftseen Kenias sowie die isolierten Vorkommen Guineo-Congolischer S{\"a}ugetiere in W{\"a}ldern {\"o}stlich des Kenia-Rifts, die sich {\"u}ber die Wasserscheide im Kenia-Rift ausbreiten konnten. Auf l{\"a}ngeren Zeitskalen sind solche Phasen hydrologischer Verbindung und Phasen der Isolation wiederholt aufgetreten und zeigen sich in wechselnden pal{\"a}o{\"o}kologischen Indikatoren in Sedimentbohrkernen. Hier stelle ich einen Sedimentbohrkern aus dem Koora-Becken des S{\"u}dlichen Kenia-Rifts vor, der einen Datensatz der Pal{\"a}o-Umweltbedingungen der letzten 1 Million Jahre beinhaltet. Dieser Datensatz zeigt, dass etwa vor 400 tausend Jahren die zuvor relativ stabilen Umweltbedingungen zum Erliegen kamen und tektonische, hydrologische und {\"o}kologische Ver{\"a}nderungen dazu f{\"u}hrten, dass die Wasserverf{\"u}gbarkeit, die Grasland-Vergesellschaftungen und die Bedeckung durch Baumvegetation zunehmend st{\"a}rkeren und h{\"a}ufigeren Schwankungen unterlagen. Diese großen Ver{\"a}nderungen fallen zeitlich mit Phasen zusammen, in denen das s{\"u}dliche Becken des Kenia-Rifts von vulkanischer und tektonischer Aktivit{\"a}t besonders betroffen war. Die vorliegende Arbeit zeigt deshalb deutlich, inwiefern die tektonischen und geomorphologischen Gegebenheiten im Zuge einer zeitlich langanhaltenden Extension die Hydrologie, die Pal{\"a}o-Umweltbedingungen sowie die Biodiversit{\"a}t einer Riftzone beeinflussen k{\"o}nnen.}, language = {en} } @article{RiedlMelnickMibeietal.2020, author = {Riedl, Simon and Melnick, Daniel and Mibei, Geoffrey K. and Njue, Lucy and Strecker, Manfred}, title = {Continental rifting at magmatic centres}, series = {Journal of the geological society}, volume = {177}, journal = {Journal of the geological society}, number = {1}, publisher = {Geological Soc. Publ. House}, address = {Bath}, issn = {0016-7649}, doi = {10.1144/jgs2019-021}, pages = {153 -- 169}, year = {2020}, abstract = {The structural evolution of calderas in rifts helps to characterize the spatiotemporal relationships between magmatism, long wavelength crustal deformation and the formation of tectonic deformation zones along the rift axis. We document the structural characteristics of the c. 36 ka old Menengai Caldera located within a young zone of extension in the central Kenya Rift. Field mapping and high-resolution digital surface models show that NNE-striking Holocene normal faults perpendicular to the regional ESE-WNWextension direction dominate the interior sectors of the rift. Inside the caldera, these structures are overprinted by post-collapse doming and faulting of the magmatic centre, resulting in obliquely slipping normal faults bounding a resurgence horst. Radiocarbon dating of faulted units as young as 5 ka cal BP and the palaeo-shorelines of a lake formed during the African Humid Period in the Nakuru Basin indicate that volcanism and fault activity inside and in the vicinity of Menengai must have been sustained during the Holocene. Our analysis confirms that the caldera is located at the centre of an extending rift segment and suggests that other magmatic centres and young zones of faulting along the volcano-tectonic axis of the Kenya Rift may constitute nucleation points of faulting that ultimately foster future continental break-up.}, language = {en} } @article{RiedlMelnickNjueetal.2022, author = {Riedl, Simon and Melnick, Daniel and Njue, Lucy and Sudo, Masafumi and Strecker, Manfred}, title = {Mid-Pleistocene to recent crustal extension in the inner graben of the Northern Kenya Rift}, series = {Geochemistry, geophysics, geosystems}, volume = {23}, journal = {Geochemistry, geophysics, geosystems}, number = {3}, publisher = {American Geophysical Union}, address = {Washington}, issn = {1525-2027}, doi = {10.1029/2021GC010123}, pages = {25}, year = {2022}, abstract = {Magmatic continental rifts often constitute nascent plate boundaries, yet long-term extension rates and transient rate changes associated with these early stages of continental breakup remain difficult to determine. Here, we derive a time-averaged minimum extension rate for the inner graben of the Northern Kenya Rift (NKR) of the East African Rift System for the last 0.5 m.y. We use the TanDEM-X science digital elevation model to evaluate fault-scarp geometries and determine fault throws across the volcano-tectonic axis of the inner graben of the NKR. Along rift-perpendicular profiles, amounts of cumulative extension are determined, and by integrating four new Ar-40/Ar-39 radiometric dates for the Silali volcano into the existing geochronology of the faulted volcanic units, time-averaged extension rates are calculated. This study reveals that in the inner graben of the NKR, the long-term extension rate based on mid-Pleistocene to recent brittle deformation has minimum values of 1.0-1.6 mm yr(-1), locally with values up to 2.0 mm yr(-1). A comparison with the decadal, geodetically determined extension rate reveals that at least 65\% of the extension must be accommodated within a narrow, 20-km-wide zone of the inner rift. In light of virtually inactive border faults of the NKR, we show that extension is focused in the region of the active volcano-tectonic axis in the inner graben, thus highlighting the maturing of continental rifting in the NKR.}, language = {en} }