@article{BishopMachateHenningetal.2022, author = {Bishop, Christopher Allen and Machate, Tina and Henning, Thorsten and Henkel-Oberl{\"a}nder, Janin and P{\"u}schel, Gerhard and Weber, Daniela and Grune, Tilman and Klaus, Susanne and Weitkunat, Karolin}, title = {Detrimental effects of branched-chain amino acids in glucose tolerance can be attributed to valine induced glucotoxicity in skeletal muscle}, series = {Nutrition \& Diabetes}, volume = {12}, journal = {Nutrition \& Diabetes}, number = {1}, publisher = {Nature Publishing Group}, address = {London}, issn = {2044-4052}, doi = {10.1038/s41387-022-00200-8}, pages = {9}, year = {2022}, abstract = {Objective: Current data regarding the roles of branched-chain amino acids (BCAA) in metabolic health are rather conflicting, as positive and negative effects have been attributed to their intake. Methods: To address this, individual effects of leucine and valine were elucidated in vivo (C57BL/6JRj mice) with a detailed phenotyping of these supplementations in high-fat (HF) diets and further characterization with in vitro approaches (C2C12 myocytes). Results: Here, we demonstrate that under HF conditions, leucine mediates beneficial effects on adiposity and insulin sensitivity, in part due to increasing energy expenditure-likely contributing partially to the beneficial effects of a higher milk protein intake. On the other hand, valine feeding leads to a worsening of HF-induced health impairments, specifically reducing glucose tolerance/ insulin sensitivity. These negative effects are driven by an accumulation of the valine-derived metabolite 3-hydroxyisobutyrate (3HIB). Higher plasma 3-HIB levels increase basal skeletal muscle glucose uptake which drives glucotoxicity and impairs myocyte insulin signaling. Conclusion: These data demonstrate the detrimental role of valine in an HF context and elucidate additional targetable pathways in the etiology of BCAA-induced obesity and insulin resistance.}, language = {en} } @phdthesis{HenkelOberlaender2020, author = {Henkel-Oberl{\"a}nder, Janin}, title = {Einfluss von Prostaglandin E2 auf die Entstehung von Insulinresistenz und die Regulation der Entz{\"u}ndungsantwort bei der Di{\"a}t-induzierten nicht-alkoholischen Fettlebererkrankung}, pages = {171}, year = {2020}, abstract = {Weltweit sind fast 40 \% der Bev{\"o}lkerung {\"u}bergewichtig und die Pr{\"a}valenz von Adipositas, Insulinresistenz und den resultierenden Folgeerkrankungen wie dem Metabolischen Syndrom und Typ-2-Diabetes steigt rapide an. Als h{\"a}ufigste Ursachen werden di{\"a}tetisches Fehlverhalten und mangelnde Bewegung angesehen. Die nicht-alkoholische Fettlebererkrankung (NAFLD), deren Hauptcharakteristikum die exzessive Akkumulation von Lipiden in der Leber ist, korreliert mit dem Body Mass Index (BMI). NAFLD wird als hepatische Manifestation des Metabolischen Syndroms angesehen und ist inzwischen die h{\"a}ufigste Ursache f{\"u}r Leberfunktionsst{\"o}rungen. Die Erkrankung umfasst sowohl die benigne hepatische Steatose (Fettleber) als auch die progressive Form der nicht-alkoholischen Steatohepatitis (NASH), bei der die Steatose von Entz{\"u}ndung und Fibrose begleitet ist. Die Ausbildung einer NASH erh{\"o}ht das Risiko, ein hepatozellul{\"a}res Karzinom (HCC) zu entwickeln und kann zu irreversibler Leberzirrhose und terminalem Organversagen f{\"u}hren. Nahrungsbestandteile wie Cholesterol und Fett-reiche Di{\"a}ten werden als m{\"o}gliche Faktoren diskutiert, die den {\"U}bergang einer einfachen Fettleber zur schweren Verlaufsform der Steatohepatitis / NASH beg{\"u}nstigen. Eine Ausdehnung des Fettgewebes wird von Insulinresistenz und einer niedrig-gradigen chronischen Entz{\"u}ndung des Fettgewebes begleitet. Neben Endotoxinen aus dem Darm gelangen Entz{\"u}ndungsmediatoren aus dem Fettgewebe zur Leber. Als Folge werden residente Makrophagen der Leber, die Kupfferzellen, aktiviert, die eine Entz{\"u}ndungsantwort initiieren und weitere pro-inflammatorische Mediatoren freisetzen, zu denen Chemokine, Cytokine und Prostanoide wie Prostaglandin E2 (PGE2) geh{\"o}ren. In dieser Arbeit soll aufgekl{\"a}rt werden, welchen Beitrag PGE2 an der Ausbildung von Insulinresistenz, hepatischer Steatose und Entz{\"u}ndung im Rahmen von Di{\"a}t-induzierter NASH im komplexen Zusammenspiel mit der Regulation der Cytokin-Produktion und anderen Co-Faktoren wie Hyperinsulin{\"a}mie und Hyperlipid{\"a}mie hat. In murinen und humanen Makrophagen-Populationen wurde untersucht, welche Faktoren die Bildung von PGE2 f{\"o}rdern und wie PGE2 die Entz{\"u}ndungsantwort aktivierter Makrophagen reguliert. In prim{\"a}ren Hepatozyten der Ratte sowie in isolierten humanen Hepatozyten und Zelllinien wurde der Einfluss von PGE2 allein und in Kombination mit Cytokinen, deren Bildung durch PGE2 beeinflusst werden kann, auf die Insulin-abh{\"a}ngige Regulation des Glucose- und Lipid-stoffwechsels untersucht. Um den Einfluss von PGE2 im komplexen Zusammenspiel der Zelltypen in der Leber und im Gesamtorganismus zu erfassen, wurden M{\"a}use, in denen die PGE2-Synthese durch die Deletion der mikrosomalen PGE-Synthase 1 (mPGES1) vermindert war, mit einer NASH-induzierenden Di{\"a}t gef{\"u}ttert. In Lebern von Patienten mit NASH oder in M{\"a}usen mit Di{\"a}t-induzierter NASH war die Expression der PGE2-synthetisierenden Enzyme Cyclooxygenase 2 (COX2) und mPGES1 sowie die Bildung von PGE2 im Vergleich zu gesunden Kontrollen gesteigert und korrelierte mit dem Schweregrad der Lebererkrankung. In prim{\"a}ren Makrophagen aus den Spezies Mensch, Maus und Ratte sowie in humanen Makrophagen-Zelllinien war die Bildung pro-inflammatorischer Mediatoren wie Chemokinen, Cytokinen und Prostaglandinen wie PGE2 verst{\"a}rkt, wenn die Zellen mit Endotoxinen wie Lipopolysaccharid (LPS), Fetts{\"a}uren wie Palmitins{\"a}ure, Cholesterol und Cholesterol-Kristallen oder Insulin, das als Folge der kompensatorischen Hyperinsulin{\"a}mie bei Insulinresistenz verst{\"a}rkt freigesetzt wird, inkubiert wurden. Insulin steigerte dabei synergistisch mit LPS oder Palmitins{\"a}ure die Synthese von PGE2 sowie der anderen Entz{\"u}ndungsmediatoren wie Interleukin (IL) 8 und IL-1β. PGE2 reguliert die Entz{\"u}ndungsantwort: Neben der Induktion der eigenen Synthese-Enzyme verst{\"a}rkte PGE2 die Expression der Immunzell-rekrutierenden Chemokine IL-8 und (C-C-Motiv)-Ligand 2 (CCL2) sowie die der pro-inflammatorischen Cytokine IL-1β und IL-6 in Makrophagen und kann so zur Verst{\"a}rkung der Entz{\"u}ndungsreaktion beitragen. Außerdem f{\"o}rderte PGE2 die Bildung von Oncostatin M (OSM) und OSM induzierte in einer positiven R{\"u}ckkopplungsschleife die Expression der PGE2-synthetisierenden Enzyme. Andererseits hemmte PGE2 die basale und LPS-vermittelte Bildung des potenten pro-inflammatorischen Cytokins Tumornekrosefaktor α (TNFα) und kann so die Entz{\"u}ndungsreaktion abschw{\"a}chen. In prim{\"a}ren Hepatozyten der Ratte und humanen Hepatozyten beeintr{\"a}chtigte PGE2 direkt die Insulin-abh{\"a}ngige Aktivierung der Insulinrezeptor-Signalkette zur Steigerung der Glucose-Verwertung, in dem es durch Signalketten, die den verschiedenen PGE2-Rezeptoren nachgeschaltet sind, Kinasen wie ERK1/2 und IKKβ aktivierte und eine inhibierende Serin-Phosphorylierung der Insulinrezeptorsubstrate bewirkte. PGE2 verst{\"a}rkte außerdem die IL-6- oder OSM-vermittelte Insulinresistenz und Steatose in prim{\"a}ren Hepatozyten der Ratte. Die Wirkung von PGE2 im Gesamtorganismus sollte in M{\"a}usen mit Di{\"a}t-induzierter NASH untersucht werden. Die F{\"u}tterung einer Hochfett-Di{\"a}t mit Schmalz als Fettquelle, das vor allem ges{\"a}ttigte Fetts{\"a}uren enth{\"a}lt, verursachte Fettleibigkeit, Insulinresistenz und eine hepatische Steatose in Wildtyp-M{\"a}usen. In Tieren, die eine Hochfett-Di{\"a}t mit Soja{\"o}l als Fettquelle, das vor allem (ω-6)-mehrfach-unges{\"a}ttigte Fetts{\"a}uren (PUFAs) enth{\"a}lt, oder eine Niedrigfett-Di{\"a}t mit Cholesterol erhielten, war lediglich eine hepatische Steatose nachweisbar, jedoch keine verst{\"a}rkte Gewichtszunahme im Vergleich zu Geschwistertieren, die eine Standard-Di{\"a}t bekamen. Im Gegensatz dazu verursachte die F{\"u}tterung einer Hochfett-Di{\"a}t mit PUFA-reichem Soja{\"o}l als Fettquelle in Kombination mit Cholesterol sowohl Fettleibigkeit und Insulinresistenz als auch hepatische Steatose mit Hepatozyten-Hypertrophie, lobul{\"a}rer Entz{\"u}ndung und beginnender Fibrose in Wildtyp-M{\"a}usen. Diese Tiere spiegelten alle klinischen und histologischen Parameter der humanen NASH im Metabolischen Syndrom wider. Nur die Kombination von hohen Mengen unges{\"a}ttigter Fetts{\"a}uren aus Soja{\"o}l und Cholesterol in der Nahrung f{\"u}hrte zu einer exzessiven Akkumulation des Cholesterols und der Bildung von Cholesterol-Kristallen in den Hepatozyten, die zur Sch{\"a}digung der Mitochondrien, schwerem oxidativem Stress und schließlich zum Absterben der Zellen f{\"u}hrten. Als Konsequenz phagozytieren Kupfferzellen die Zelltr{\"u}mmer der Cholesterol-{\"u}berladenen Hepatozyten, werden dadurch aktiviert, setzen Chemokine, Cytokine und PGE2 frei, die die Entz{\"u}ndungsreaktion verst{\"a}rken und die Infiltration von weiteren Immunzellen initiieren k{\"o}nnen und verursachen so eine Progression zur Steatohepatitis (NASH). Die Deletion der mikrosomalen PGE-Synthase 1 (mPGES1), dem induzierbaren Enzym der PGE2-Synthese aus Cyclooxygenase-abh{\"a}ngigen Vorstufen, reduzierte die Di{\"a}t-abh{\"a}ngige Bildung von PGE2 in der Leber. Die F{\"u}tterung der NASH-induzierenden Di{\"a}t verursachte in Wildtyp- und mPGES1-defizienten M{\"a}usen eine {\"a}hnliche Fettleibigkeit und Zunahme der Fettmasse sowie die Ausbildung von hepatischer Steatose mit Entz{\"u}ndung und Fibrose (NASH) im histologischen Bild. In mPGES1-defizienten M{\"a}usen waren jedoch Parameter f{\"u}r die Infiltration von Entz{\"u}ndungszellen und die Di{\"a}t-abh{\"a}ngige Sch{\"a}digung der Leber im Vergleich zu Wildtyp-Tieren erh{\"o}ht, was sich auch in einer st{\"a}rkeren Di{\"a}t-induzierten systemischen Insulinresistenz widerspiegelte. Die Bildung des pro-inflammatorischen und pro-apoptotischen Cytokins TNFα war in mPGES1-defizienten M{\"a}usen durch die Aufhebung der negativen R{\"u}ckkopplungshemmung verst{\"a}rkt, was einen gesteigerten Di{\"a}t-induzierten Zelluntergang gestresster Lipid-{\"u}berladener Hepatozyten und eine nach-geschaltete Entz{\"u}ndungsantwort zur Folge hatte. Zusammenfassend wurde unter den gew{\"a}hlten Versuchsbedingungen in vivo eine anti-inflammatorische Rolle von PGE2 verifiziert, da das Prostanoid vor allem indirekt durch die Hemmung der TNFα-vermittelten Entz{\"u}ndungsreaktion die Sch{\"a}digung der Leber, die Verst{\"a}rkung der Entz{\"u}ndung und die Ausbildung von Insulinresistenz im Rahmen der Di{\"a}t-abh{\"a}ngigen Fettlebererkrankung abschw{\"a}chte.}, language = {de} } @misc{HenkelOberlaenderKlauderStatzetal.2021, author = {Henkel-Oberl{\"a}nder, Janin and Klauder, Julia and Statz, Meike and Wohlenberg, Anne-Sophie and Kuipers, Sonja and Vahrenbrink, Madita}, title = {Enhanced Palmitate-Induced Interleukin-8 Formation in Human Macrophages by Insulin or Prostaglandin E₂}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1149}, issn = {1866-8372}, doi = {10.25932/publishup-51837}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-518377}, pages = {12}, year = {2021}, abstract = {Macrophages in pathologically expanded dysfunctional white adipose tissue are exposed to a mix of potential modulators of inflammatory response, including fatty acids released from insulin-resistant adipocytes, increased levels of insulin produced to compensate insulin resistance, and prostaglandin E₂ (PGE₂) released from activated macrophages. The current study addressed the question of how palmitate might interact with insulin or PGE₂ to induce the formation of the chemotactic pro-inflammatory cytokine interleukin-8 (IL-8). Human THP-1 cells were differentiated into macrophages. In these macrophages, palmitate induced IL-8 formation. Insulin enhanced the induction of IL-8 formation by palmitate as well as the palmitate-dependent stimulation of PGE₂ synthesis. PGE₂ in turn elicited IL-8 formation on its own and enhanced the induction of IL-8 release by palmitate, most likely by activating the EP4 receptor. Since IL-8 causes insulin resistance and fosters inflammation, the increase in palmitate-induced IL-8 formation that is caused by hyperinsulinemia and locally produced PGE₂ in chronically inflamed adipose tissue might favor disease progression in a vicious feed-forward cycle.}, language = {en} } @article{HenkelOberlaenderKlauderStatzetal.2021, author = {Henkel-Oberl{\"a}nder, Janin and Klauder, Julia and Statz, Meike and Wohlenberg, Anne-Sophie and Kuipers, Sonja and Vahrenbrink, Madita and P{\"u}schel, Gerhard}, title = {Enhanced Palmitate-Induced Interleukin-8 Formation in Human Macrophages by Insulin or Prostaglandin E₂}, series = {Biomedicines : open access journal}, volume = {9}, journal = {Biomedicines : open access journal}, number = {5}, publisher = {MDPI}, address = {Basel}, issn = {2227-9059}, doi = {10.3390/biomedicines9050449}, pages = {10}, year = {2021}, abstract = {Macrophages in pathologically expanded dysfunctional white adipose tissue are exposed to a mix of potential modulators of inflammatory response, including fatty acids released from insulin-resistant adipocytes, increased levels of insulin produced to compensate insulin resistance, and prostaglandin E₂ (PGE₂) released from activated macrophages. The current study addressed the question of how palmitate might interact with insulin or PGE₂ to induce the formation of the chemotactic pro-inflammatory cytokine interleukin-8 (IL-8). Human THP-1 cells were differentiated into macrophages. In these macrophages, palmitate induced IL-8 formation. Insulin enhanced the induction of IL-8 formation by palmitate as well as the palmitate-dependent stimulation of PGE₂ synthesis. PGE₂ in turn elicited IL-8 formation on its own and enhanced the induction of IL-8 release by palmitate, most likely by activating the EP4 receptor. Since IL-8 causes insulin resistance and fosters inflammation, the increase in palmitate-induced IL-8 formation that is caused by hyperinsulinemia and locally produced PGE₂ in chronically inflamed adipose tissue might favor disease progression in a vicious feed-forward cycle.}, language = {en} } @article{PueschelKlauderHenkelOberlaender2022, author = {P{\"u}schel, Gerhard and Klauder, Julia and Henkel-Oberl{\"a}nder, Janin}, title = {Macrophages, low-grade inflammation, insulin resistance and hyperinsulinemia}, series = {Journal of Clinical Medicine : open access journal}, volume = {11}, journal = {Journal of Clinical Medicine : open access journal}, number = {15}, publisher = {MDPI}, address = {Basel, Schweiz}, issn = {2077-0383}, doi = {10.3390/jcm11154358}, pages = {1 -- 30}, year = {2022}, abstract = {Metabolic derangement with poor glycemic control accompanying overweight and obesity is associated with chronic low-grade inflammation and hyperinsulinemia. Macrophages, which present a very heterogeneous population of cells, play a key role in the maintenance of normal tissue homeostasis, but functional alterations in the resident macrophage pool as well as newly recruited monocyte-derived macrophages are important drivers in the development of low-grade inflammation. While metabolic dysfunction, insulin resistance and tissue damage may trigger or advance pro-inflammatory responses in macrophages, the inflammation itself contributes to the development of insulin resistance and the resulting hyperinsulinemia. Macrophages express insulin receptors whose downstream signaling networks share a number of knots with the signaling pathways of pattern recognition and cytokine receptors, which shape macrophage polarity. The shared knots allow insulin to enhance or attenuate both pro-inflammatory and anti-inflammatory macrophage responses. This supposedly physiological function may be impaired by hyperinsulinemia or insulin resistance in macrophages. This review discusses the mutual ambiguous relationship of low-grade inflammation, insulin resistance, hyperinsulinemia and the insulin-dependent modulation of macrophage activity with a focus on adipose tissue and liver.}, language = {en} } @misc{PueschelKlauderHenkelOberlaender, author = {P{\"u}schel, Gerhard Paul and Klauder, Julia and Henkel-Oberl{\"a}nder, Janin}, title = {Macrophages, Low-Grade Inflammation, Insulin Resistance and Hyperinsulinemia: A Mutual Ambiguous Relationship in the Development of Metabolic Diseases}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1279}, issn = {1866-8372}, doi = {10.25932/publishup-57010}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-570106}, pages = {1 -- 30}, abstract = {Metabolic derangement with poor glycemic control accompanying overweight and obesity is associated with chronic low-grade inflammation and hyperinsulinemia. Macrophages, which present a very heterogeneous population of cells, play a key role in the maintenance of normal tissue homeostasis, but functional alterations in the resident macrophage pool as well as newly recruited monocyte-derived macrophages are important drivers in the development of low-grade inflammation. While metabolic dysfunction, insulin resistance and tissue damage may trigger or advance pro-inflammatory responses in macrophages, the inflammation itself contributes to the development of insulin resistance and the resulting hyperinsulinemia. Macrophages express insulin receptors whose downstream signaling networks share a number of knots with the signaling pathways of pattern recognition and cytokine receptors, which shape macrophage polarity. The shared knots allow insulin to enhance or attenuate both pro-inflammatory and anti-inflammatory macrophage responses. This supposedly physiological function may be impaired by hyperinsulinemia or insulin resistance in macrophages. This review discusses the mutual ambiguous relationship of low-grade inflammation, insulin resistance, hyperinsulinemia and the insulin-dependent modulation of macrophage activity with a focus on adipose tissue and liver.}, language = {en} }