@misc{ErdossyHorvathYarmanetal.2016, author = {Erdossy, Julia and Horvath, Viola and Yarman, Aysu and Scheller, Frieder W. and Gyurcsanyi, Robert E.}, title = {Electrosynthesized molecularly imprinted polymers for protein recognition}, series = {Trends in Analytical Chemistry}, volume = {79}, journal = {Trends in Analytical Chemistry}, publisher = {Elsevier}, address = {Oxford}, issn = {0165-9936}, doi = {10.1016/j.trac.2015.12.018}, pages = {179 -- 190}, year = {2016}, abstract = {Molecularly imprinted polymers (MIPs) for the recognition of proteins are expected to possess high affinity through the establishment of multiple interactions between the polymer matrix and the large number of functional groups of the target. However, while highly affine recognition sites need building blocks rich in complementary functionalities to their target, such units are likely to generate high levels of nonspecific binding. This paradox, that nature solved by evolution for biological receptors, needs to be addressed by the implementation of new concepts in molecular imprinting of proteins. Additionally, the structural variability, large size and incompatibility with a range of monomers made the development of protein MIPs to take a slow start. While the majority of MIP preparation methods are variants of chemical polymerization, the polymerization of electroactive functional monomers emerged as a particularly advantageous approach for chemical sensing application. Electropolymerization can be performed from aqueous solutions to preserve the natural conformation of the protein templates, with high spatial resolution and electrochemical control of the polymerization process. This review compiles the latest results, identifying major trends and providing an outlook on the perspectives of electrosynthesised protein-imprinted MIPs for chemical sensing. (C) 2016 Elsevier B.V. All rights reserved.}, language = {en} } @article{StojanovicErdossyKeltaietal.2017, author = {Stojanovic, Zorica and Erdossy, Julia and Keltai, Katalin and Scheller, Frieder W. and Gyurcsanyi, Robert E.}, title = {Electrosynthesized molecularly imprinted polyscopoletin nanofilms for human serum albumin detection}, series = {Analytica chimica acta : an international journal devoted to all branches of analytical chemistry}, volume = {977}, journal = {Analytica chimica acta : an international journal devoted to all branches of analytical chemistry}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0003-2670}, doi = {10.1016/j.aca.2017.04.043}, pages = {1 -- 9}, year = {2017}, abstract = {Molecularly imprinted polymers (MIPs) rendered selective solely by the imprinting with protein templates lacking of distinctive properties to facilitate strong target-MIP interaction are likely to exhibit medium to low template binding affinities. While this prohibits the use of such MIPs for applications requiring the assessment of very low template concentrations, their implementation for the quantification of high-abundance proteins seems to have a clear niche in the analytical practice. We investigated this opportunity by developing a polyscopoletin-based MIP nanofilm for the electrochemical determination of elevated human serum albumin (HSA) in urine. As reference for a low abundance protein ferritin-MIPs were also prepared by the same procedure. Under optimal conditions, the imprinted sensors gave a linear response to HSA in the concentration range of 20-100 mg/dm(3), and to ferritin in the range of 120-360 mg/dm(3). While as expected the obtained limit of detection was not sufficient to determine endogenous ferritin in plasma, the HSA-sensor was successfully employed to analyse urine samples of patients with albuminuria. The results suggest that MIP-based sensors may be applicable for quantifying high abundance proteins in a clinical setting. (c) 2017 Elsevier B.V. All rights reserved.}, language = {en} } @article{ZhangYarmanErdossyetal.2018, author = {Zhang, Xiaorong and Yarman, Aysu and Erdossy, Julia and Katz, Sagie and Zebger, Ingo and Jetzschmann, Katharina J. and Altintas, Zeynep and Wollenberger, Ulla and Gyurcsanyi, Robert E. and Scheller, Frieder W.}, title = {Electrosynthesized MIPs for transferrin}, series = {Biosensors and bioelectronics : the principal international journal devoted to research, design development and application of biosensors and bioelectronics}, volume = {105}, journal = {Biosensors and bioelectronics : the principal international journal devoted to research, design development and application of biosensors and bioelectronics}, publisher = {Elsevier}, address = {Oxford}, issn = {0956-5663}, doi = {10.1016/j.bios.2018.01.011}, pages = {29 -- 35}, year = {2018}, abstract = {Molecularly imprinted polymer (MP) nanofilrns for transferrin (Trf) have been synthesized on gold surfaces by electro-polymerizing the functional monomer scopoletin in the presence of the protein target or around pre-adsorbed Trf. As determined by atomic force microscopy (AFM) the film thickness was comparable with the molecular dimension of the target. The target (re)binding properties of the electro-synthesized MIP films was evaluated by cyclic voltammetry (CV) and square wave voltammetry (SWV) through the target-binding induced permeability changes of the MIP nanofilms to the ferricyanide redox marker, as well as by surface plasmon resonance (SPR) and surface enhanced infrared absorption spectroscopy (SEIRAS) of the immobilized protein molecules. For Trf a linear concentration dependence in the lower micromolar range and an imprinting factor of similar to 5 was obtained by SWV and SPR. Furthermore, non-target proteins including the iron-free apo-Trf were discriminated by pronounced size and shape specificity. Whilst it is generally assumed that the rebinding of the target or of cross-reacting proteins exclusively takes place at the polymer here we considered also the interaction of the protein molecules with the underlying gold transducers. We demonstrate by SWV that adsorption of proteins suppresses the signal of the redox marker even at the bare gold surface and by SEIRAS that the treatment of the MIP with proteinase K or NaOH only partially removes the target protein. Therefore, we conclude that when interpreting binding of proteins to directly MIP-covered gold electrodes the interactions between the protein and the gold surface should also be considered.}, language = {en} }