@article{SpiraBuchmannKoenigetal.2019, author = {Spira, Dominik and Buchmann, Nikolaus and Koenig, Maximilian and Rosada, Adrian and Steinhagen-Thiessen, Elisabeth and Demuth, Ilja and Norman, Kristina}, title = {Sex-specific differences in the association of vitamin D with low lean mass and frailty}, series = {Nutrition}, volume = {62}, journal = {Nutrition}, publisher = {Elsevier}, address = {New York}, issn = {0899-9007}, doi = {10.1016/j.nut.2018.11.020}, pages = {1 -- 6}, year = {2019}, abstract = {Background: Sex-specific differences in factors associated with aging and lifespan, such as sarcopenia and disease development, are increasingly recognized. The study aims to assess sex-specific aspects of the association between vitamin D insufficiency and low lean mass as well as between vitamin D insufficiency and the frailty phenotype. Methods: A total of 1102 participants (51\% women) from the Berlin Aging Study II were included in this cross-sectional study. Vitamin D insufficiency was defined as a 25(OH)D level <50 nmol/L. Lean mass was assessed with dual-energy x-ray absorptiometry and corrected by body mass index. Low lean mass was defined according to the Foundations for the National Institutes of Health Sarcopenia Project criteria (appendicular lean mass/body mass index <0.789 in men and <0.512 in women) and frailty defined according to the Fried criteria. Results: In a risk factor adjusted analysis, the association of vitamin D insufficiency was significantly influenced by sex (P for interaction < 0.001). Men with vitamin D insufficiency had 1.8 times higher odds of having low lean mass, with no association between vitamin D insufficiency and low lean mass in women. Participants with vitamin D insufficiency had 1.5 higher odds of being prefrail/frail with no significant effect modification by sex. Conclusions: We found notable sex-specific differences in the association of vitamin D insufficiency with low lean mass but not of vitamin D insufficiency with frailty. Vitamin D might play a relevant role in the loss of lean mass in men but not women and might be a biological marker of an unfavorable aging process associated with early development of frailty regardless of sex.}, language = {en} } @misc{WeberKochlikDemuthetal.2020, author = {Weber, Daniela and Kochlik, Bastian Max and Demuth, Ilja and Steinhagen-Thiessen, Elisabeth and Grune, Tilman and Norman, Kristina}, title = {Plasma carotenoids, tocopherols and retinol}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, issn = {1866-8372}, doi = {10.25932/publishup-51599}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-515996}, pages = {10}, year = {2020}, abstract = {Regular consumption of fruits and vegetables, which is related to high plasma levels of lipid-soluble micro-nutrients such as carotenoids and tocopherols, is linked to lower incidences of various age-related diseases. Differences in lipid-soluble micronutrient blood concentrations seem to be associated with age. Our retrospective analysis included men and women aged 22-37 and 60-85 years from the Berlin Aging Study II. Participants with simultaneously available plasma samples and dietary data were included (n = 1973). Differences between young and old groups were found for plasma lycopene, alpha-carotene, alpha-tocopherol, beta-cryptoxanthin (only in women), and gamma-tocopherol (only in men). beta-Carotene, retinol and lutein/zeaxanthin did not differ between young and old participants regardless of the sex. We found significant associations for lycopene, alpha-carotene (both inverse), alpha-tocopherol, gamma-tocopherol, and beta-carotene (all positive) with age. Adjusting for BMI, smoking status, season, cholesterol and dietary intake confirmed these associations, except for beta-carotene. These micronutrients are important antioxidants and associated with lower incidence of age-related diseases, therefore it is important to understand the underlying mechanisms in order to implement dietary strategies for the prevention of age-related diseases. To explain the lower lycopene and alpha-carotene concentration in older subjects, bioavailability studies in older participants are necessary.}, language = {en} } @article{WeberKochlikDemuthetal.2020, author = {Weber, Daniela and Kochlik, Bastian Max and Demuth, Ilja and Steinhagen-Thiessen, Elisabeth and Grune, Tilman and Norman, Kristina}, title = {Plasma carotenoids, tocopherols and retinol}, series = {Redox Biology}, volume = {32}, journal = {Redox Biology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2213-2317}, doi = {10.1016/j.redox.2020.101461}, pages = {1 -- 8}, year = {2020}, abstract = {Regular consumption of fruits and vegetables, which is related to high plasma levels of lipid-soluble micro-nutrients such as carotenoids and tocopherols, is linked to lower incidences of various age-related diseases. Differences in lipid-soluble micronutrient blood concentrations seem to be associated with age. Our retrospective analysis included men and women aged 22-37 and 60-85 years from the Berlin Aging Study II. Participants with simultaneously available plasma samples and dietary data were included (n = 1973). Differences between young and old groups were found for plasma lycopene, alpha-carotene, alpha-tocopherol, beta-cryptoxanthin (only in women), and gamma-tocopherol (only in men). beta-Carotene, retinol and lutein/zeaxanthin did not differ between young and old participants regardless of the sex. We found significant associations for lycopene, alpha-carotene (both inverse), alpha-tocopherol, gamma-tocopherol, and beta-carotene (all positive) with age. Adjusting for BMI, smoking status, season, cholesterol and dietary intake confirmed these associations, except for beta-carotene. These micronutrients are important antioxidants and associated with lower incidence of age-related diseases, therefore it is important to understand the underlying mechanisms in order to implement dietary strategies for the prevention of age-related diseases. To explain the lower lycopene and alpha-carotene concentration in older subjects, bioavailability studies in older participants are necessary.}, language = {en} }