@article{BahrKolberKabothBahretal.2020, author = {Bahr, Andr{\´e} and Kolber, Gilles and Kaboth-Bahr, Stefanie and Reinhardt, Lutz and Friedrich, Oliver and Pross, J{\"o}rg}, title = {Mega-monsoon variability during the late Triassic}, series = {Sedimentology : the journal of the International Association of Sedimentologists}, volume = {67}, journal = {Sedimentology : the journal of the International Association of Sedimentologists}, number = {2}, publisher = {Wiley-Blackwell}, address = {Oxford}, issn = {0037-0746}, doi = {10.1111/sed.12668}, pages = {951 -- 970}, year = {2020}, abstract = {The formation of the supercontinent Pangaea during the Permo-Triassic gave rise to an extreme monsoonal climate (often termed 'mega-monsoon') that has been documented by numerous palaeo-records. However, considerable debate exists about the role of orbital forcing in causing humid intervals in an otherwise arid climate. To shed new light on the forcing of monsoonal variability in subtropical Pangaea, this study focuses on sediment facies and colour variability of playa and alluvial fan deposits in an outcrop from the late Carnian (ca 225 Ma) in the southern Germanic Basin, south-western Germany. The sediments were deposited against a background of increasingly arid conditions following the humid Carnian Pluvial Event (ca 234 to 232 Ma). The ca 2 center dot 4 Myr long sedimentary succession studied shows a tripartite long-term evolution, starting with a distal mud-flat facies deposited under arid conditions. This phase was followed by a highly variable playa-lake environment that documents more humid conditions and finally a regression of the playa-lake due to a return of arid conditions. The red-green (a*) and lightness (L*) records show that this long-term variability was overprinted by alternating wet/dry cycles driven by orbital precession and ca 405 kyr eccentricity, without significant influence of obliquity. The absence of obliquity in this record indicates that high-latitude forcing played only a minor role in the southern Germanic Basin during the late Carnian. This is different from the subsequent Norian when high-latitude signals became more pronounced, potentially related to the northward drift of the Germanic Basin. The recurring pattern of pluvial events during the late Triassic demonstrates that orbital forcing, in particular eccentricity, stimulated the occurrence and intensity of wet phases. It also highlights the possibility that the Carnian Pluvial Event, although most likely triggered by enhanced volcanic activity, may also have been modified by an orbital stimulus.}, language = {en} } @article{KabothBahrBahrStepaneketal.2021, author = {Kaboth-Bahr, Stefanie and Bahr, Andr{\´e} and Stepanek, Christian and Catunda, Maria Carolina Amorim and Karas, Cyrus and Ziegler, Martin and Garc{\´i}a-Gallardo, {\´A}ngela and Grunert, Patrick}, title = {Mediterranean heat injection to the North Atlantic delayed the intensification of Northern Hemisphere glaciations}, series = {Communications Earth \& Environment}, journal = {Communications Earth \& Environment}, publisher = {Springer Nature}, address = {London}, issn = {2662-4435}, doi = {10.1038/s43247-021-00232-5}, pages = {1 -- 9}, year = {2021}, abstract = {The intensification of Northern Hemisphere glaciations at the end of the Pliocene epoch marks one of the most substantial climatic shifts of the Cenozoic. Despite global cooling, sea surface temperatures in the high latitude North Atlantic Ocean rose between 2.9-2.7 million years ago. Here we present sedimentary geochemical proxy data from the Gulf of Cadiz to reconstruct the variability of Mediterranean Outflow Water, an important heat source to the North Atlantic. We find evidence for enhanced production of Mediterranean Outflow from the mid-Pliocene to the late Pliocene which we infer could have driven a sub-surface heat channel into the high-latitude North Atlantic. We then use Earth System Models to constrain the impact of enhanced Mediterranean Outflow production on the northward heat transport in the North Atlantic. In accord with the proxy data, the numerical model results support the formation of a sub-surface channel that pumped heat from the subtropics into the high latitude North Atlantic. We further suggest that this mechanism could have delayed ice sheet growth at the end of the Pliocene.}, language = {en} } @misc{KabothBahrBahrStepaneketal.2021, author = {Kaboth-Bahr, Stefanie and Bahr, Andr{\´e} and Stepanek, Christian and Catunda, Maria Carolina Amorim and Karas, Cyrus and Ziegler, Martin and Garc{\´i}a-Gallardo, {\´A}ngela and Grunert, Patrick}, title = {Mediterranean heat injection to the North Atlantic delayed the intensification of Northern Hemisphere glaciations}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1237}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1866-8372}, doi = {10.25932/publishup-54876}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-548762}, pages = {1 -- 9}, year = {2021}, abstract = {The intensification of Northern Hemisphere glaciations at the end of the Pliocene epoch marks one of the most substantial climatic shifts of the Cenozoic. Despite global cooling, sea surface temperatures in the high latitude North Atlantic Ocean rose between 2.9-2.7 million years ago. Here we present sedimentary geochemical proxy data from the Gulf of Cadiz to reconstruct the variability of Mediterranean Outflow Water, an important heat source to the North Atlantic. We find evidence for enhanced production of Mediterranean Outflow from the mid-Pliocene to the late Pliocene which we infer could have driven a sub-surface heat channel into the high-latitude North Atlantic. We then use Earth System Models to constrain the impact of enhanced Mediterranean Outflow production on the northward heat transport in the North Atlantic. In accord with the proxy data, the numerical model results support the formation of a sub-surface channel that pumped heat from the subtropics into the high latitude North Atlantic. We further suggest that this mechanism could have delayed ice sheet growth at the end of the Pliocene.}, language = {en} } @article{KabothBahrBahrZeedenetal.2021, author = {Kaboth-Bahr, Stefanie and Bahr, Andr{\´e} and Zeeden, Christian and Yamoah, Kweku A. and Lone, Mahjoor Ahmad and Chuang, Chih-Kai and L{\"o}wemark, Ludvig and Wei, Kuo-Yen}, title = {A tale of shifting relations}, series = {Scientific Reports}, volume = {11}, journal = {Scientific Reports}, publisher = {Macmillan Publishers Limited, part of Springer Nature}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-021-85444-7}, pages = {10}, year = {2021}, abstract = {Understanding the dynamics between the East Asian summer (EASM) and winter monsoon (EAWM) is needed to predict their variability under future global warming scenarios. Here, we investigate the relationship between EASM and EAWM as well as the mechanisms driving their variability during the last 10,000 years by stacking marine and terrestrial (non-speleothem) proxy records from the East Asian realm. This provides a regional and proxy independent signal for both monsoonal systems. The respective signal was subsequently analysed using a linear regression model. We find that the phase relationship between EASM and EAWM is not time-constant and significantly depends on orbital configuration changes. In addition, changes in the Atlantic Meridional Overturning circulation, Arctic sea-ice coverage, El Ni{\~n}o-Southern Oscillation and Sun Spot numbers contributed to millennial scale changes in the EASM and EAWM during the Holocene. We also argue that the bulk signal of monsoonal activity captured by the stacked non-speleothem proxy records supports the previously argued bias of speleothem climatic archives to moisture source changes and/or seasonality.}, language = {en} } @misc{KabothBahrBahrZeedenetal.2021, author = {Kaboth-Bahr, Stefanie and Bahr, Andr{\´e} and Zeeden, Christian and Yamoah, Kweku A. and Lone, Mahjoor Ahmad and Chuang, Chih-Kai and L{\"o}wemark, Ludvig and Wei, Kuo-Yen}, title = {A tale of shifting relations}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, issn = {1866-8372}, doi = {10.25932/publishup-51573}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-515735}, pages = {12}, year = {2021}, abstract = {Understanding the dynamics between the East Asian summer (EASM) and winter monsoon (EAWM) is needed to predict their variability under future global warming scenarios. Here, we investigate the relationship between EASM and EAWM as well as the mechanisms driving their variability during the last 10,000 years by stacking marine and terrestrial (non-speleothem) proxy records from the East Asian realm. This provides a regional and proxy independent signal for both monsoonal systems. The respective signal was subsequently analysed using a linear regression model. We find that the phase relationship between EASM and EAWM is not time-constant and significantly depends on orbital configuration changes. In addition, changes in the Atlantic Meridional Overturning circulation, Arctic sea-ice coverage, El Ni{\~n}o-Southern Oscillation and Sun Spot numbers contributed to millennial scale changes in the EASM and EAWM during the Holocene. We also argue that the bulk signal of monsoonal activity captured by the stacked non-speleothem proxy records supports the previously argued bias of speleothem climatic archives to moisture source changes and/or seasonality.}, language = {en} } @article{KwiecienArzLamyetal.2009, author = {Kwiecien, Olga and Arz, Helge Wolfgang and Lamy, Frank and Plessen, Birgit and Bahr, Andr{\´e} and Haug, Gerald H.}, title = {North Atlantic control on precipitation pattern in the eastern Mediterranean/Black Sea region during the last glacial}, issn = {0033-5894}, doi = {10.1016/j.yqres.2008.12.004}, year = {2009}, abstract = {Based on Proxy records from western Black Sea cores, we provide a comprehensive Study of climate change during the last glacial maximum and late-glacial period in the Black Sea region. For the first time we present a record of relative changes in precipitation for NW Anatolia based on variations in the terrigenous supply expressed as detrital carbonate concentration. The good correspondence between reconstructed rainfall intensity in NW Anatolia and past western Mediterranean sea Surface temperatures (SSTs) implies that during the glacial period the precipitation variability was controlled, like today, by Mediterranean cyclonic disturbances. Periods of reduced precipitation correlate well with low SSTs in the Mediterranean related to Heinrich events H1 and H2. Stable oxygen isotopes and lithological and mineralogical data point to a significant modification in the dominant freshwater/sediment source concomitant to the meltwater inflow after 16.4 cal ka BP. This change implies intensification of the northern sediment source and, with other records from the Mediterranean region, consistently suggests a reorganization of the atmospheric circulation pattern affecting the hydrology of the European continent. The early deglacial northward retreat of both atmospheric and oceanic polar fronts was responsible for the warming in the Mediterranean region, leading simultaneously to more humid conditions in central and northern Europe.}, language = {en} }