@misc{HellwigTattiSartorietal.2019, author = {Hellwig, Niels and Tatti, Dylan and Sartori, Giacomo and Anschlag, Kerstin and Graefe, Ulfert and Egli, Markus and Gobat, Jean-Michel and Broll, Gabriele}, title = {Modeling spatial patterns of humus forms in montane and subalpine forests}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1128}, issn = {1866-8372}, doi = {10.25932/publishup-47226}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-472265}, pages = {17}, year = {2019}, abstract = {Humus forms are a distinctive morphological indicator of soil organic matter decomposition. The spatial distribution of humus forms depends on environmental factors such as topography, climate and vegetation. In montane and subalpine forests, environmental influences show a high spatial heterogeneity, which is reflected by a high spatial variability of humus forms. This study aims at examining spatial patterns of humus forms and their dependence on the spatial scale in a high mountain forest environment (Val di Sole/Val di Rabbi, Trentino, Italian Alps). On the basis of the distributions of environmental covariates across the study area, we described humus forms at the local scale (six sampling sites), slope scale (60 sampling sites) and landscape scale (30 additional sampling sites). The local variability of humus forms was analyzed with regard to the ground cover type. At the slope and landscape scale, spatial patterns of humus forms were modeled applying random forests and ordinary kriging of the model residuals. The results indicate that the occurrence of the humus form classes Mull, Mullmoder, Moder, Amphi and Eroded Moder generally depends on the topographical position. Local-scale patterns are mostly related to micro-topography (local accumulation and erosion sites) and ground cover, whereas slope-scale patterns are mainly connected with slope exposure and elevation. Patterns at the landscape scale show a rather irregular distribution, as spatial models at this scale do not account for local to slope-scale variations of humus forms. Moreover, models at the slope scale perform distinctly better than at the landscape scale. In conclusion, the results of this study highlight that landscape-scale predictions of humus forms should be accompanied by local- and slope-scale studies in order to enhance the general understanding of humus form patterns.}, language = {en} } @article{HellwigTattiSartorietal.2018, author = {Hellwig, Niels and Tatti, Dylan and Sartori, Giacomo and Anschlag, Kerstin and Graefe, Ulfert and Egli, Markus and Gobat, Jean-Michel and Broll, Gabriele}, title = {Modeling spatial patterns of humus forms in montane and subalpine forests}, series = {Sustainability}, volume = {11}, journal = {Sustainability}, number = {1}, publisher = {MDPI}, address = {Basel}, issn = {2071-1050}, doi = {10.3390/su11010048}, pages = {15}, year = {2018}, abstract = {Humus forms are a distinctive morphological indicator of soil organic matter decomposition. The spatial distribution of humus forms depends on environmental factors such as topography, climate and vegetation. In montane and subalpine forests, environmental influences show a high spatial heterogeneity, which is reflected by a high spatial variability of humus forms. This study aims at examining spatial patterns of humus forms and their dependence on the spatial scale in a high mountain forest environment (Val di Sole/Val di Rabbi, Trentino, Italian Alps). On the basis of the distributions of environmental covariates across the study area, we described humus forms at the local scale (six sampling sites), slope scale (60 sampling sites) and landscape scale (30 additional sampling sites). The local variability of humus forms was analyzed with regard to the ground cover type. At the slope and landscape scale, spatial patterns of humus forms were modeled applying random forests and ordinary kriging of the model residuals. The results indicate that the occurrence of the humus form classes Mull, Mullmoder, Moder, Amphi and Eroded Moder generally depends on the topographical position. Local-scale patterns are mostly related to micro-topography (local accumulation and erosion sites) and ground cover, whereas slope-scale patterns are mainly connected with slope exposure and elevation. Patterns at the landscape scale show a rather irregular distribution, as spatial models at this scale do not account for local to slope-scale variations of humus forms. Moreover, models at the slope scale perform distinctly better than at the landscape scale. In conclusion, the results of this study highlight that landscape-scale predictions of humus forms should be accompanied by local- and slope-scale studies in order to enhance the general understanding of humus form patterns.}, language = {en} } @article{LoefflerAnschlagBakeretal.2011, author = {Loeffler, J{\"o}rg and Anschlag, Kerstin and Baker, Barry and Finch, Oliver-D. and Diekkrueger, Bernd and Wundram, Dirk and Schroeder, Boris and Pape, Roland and Lundberg, Anders}, title = {Mountain ecosystem response to global change}, series = {Erdkunde : archive for scientific geography}, volume = {65}, journal = {Erdkunde : archive for scientific geography}, number = {2}, publisher = {Geographisches Inst., Univ. Bonn}, address = {Goch}, issn = {0014-0015}, doi = {10.3112/erdkunde.2011.02.06}, pages = {189 -- 213}, year = {2011}, abstract = {Mountain ecosystems are commonly regarded as being highly sensitive to global change. Due to the system complexity and multifaceted interacting drivers, however, understanding current responses and predicting future changes in these ecosystems is extremely difficult. We aim to discuss potential effects of global change on mountain ecosystems and give examples of the underlying response mechanisms as they are understood at present. Based on the development of scientific global change research in mountains and its recent structures, we identify future research needs, highlighting the major lack and the importance of integrated studies that implement multi-factor, multi-method, multi-scale, and interdisciplinary research.}, language = {en} }