@misc{ElNagarLauermannSarhanetal.2019, author = {El-Nagar, Gumaa A. and Lauermann, Iver and Sarhan, Radwan Mohamed and Roth, Christina}, title = {Hierarchically structured iron-doped silver (Ag-Fe) lotus flowers for an efficient oxygen reduction reaction (vol 10, pg 7304 -7310, 2018)}, series = {Nanoscale}, volume = {11}, journal = {Nanoscale}, number = {24}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2040-3364}, doi = {10.1039/c9nr90131k}, pages = {11975 -- 11975}, year = {2019}, language = {en} } @misc{LiebigHenningSarhanetal.2019, author = {Liebig, Ferenc and Henning, Ricky and Sarhan, Radwan Mohamed and Prietzel, Claudia Christina and Schmitt, Clemens Nikolaus Zeno and Bargheer, Matias and Koetz, Joachim}, title = {A simple one-step procedure to synthesise gold nanostars in concentrated aqueous surfactant solutions}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {769}, issn = {1866-8372}, doi = {10.25932/publishup-43874}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-438743}, pages = {23633 -- 23641}, year = {2019}, abstract = {Due to the enhanced electromagnetic field at the tips of metal nanoparticles, the spiked structure of gold nanostars (AuNSs) is promising for surface-enhanced Raman scattering (SERS). Therefore, the challenge is the synthesis of well designed particles with sharp tips. The influence of different surfactants, i.e., dioctyl sodium sulfosuccinate (AOT), sodium dodecyl sulfate (SDS), and benzylhexadecyldimethylammonium chloride (BDAC), as well as the combination of surfactant mixtures on the formation of nanostars in the presence of Ag⁺ ions and ascorbic acid was investigated. By varying the amount of BDAC in mixed micelles the core/spike-shell morphology of the resulting AuNSs can be tuned from small cores to large ones with sharp and large spikes. The concomitant red-shift in the absorption toward the NIR region without losing the SERS enhancement enables their use for biological applications and for time-resolved spectroscopic studies of chemical reactions, which require a permanent supply with a fresh and homogeneous solution. HRTEM micrographs and energy-dispersive X-ray (EDX) experiments allow us to verify the mechanism of nanostar formation according to the silver underpotential deposition on the spike surface in combination with micelle adsorption.}, language = {en} } @article{LiebigHenningSarhanetal.2019, author = {Liebig, Ferenc and Henning, Ricky and Sarhan, Radwan Mohamed and Prietzel, Claudia Christina and Schmitt, Clemens Nikolaus Zeno and Bargheer, Matias and Koetz, Joachim}, title = {A simple one-step procedure to synthesise gold nanostars in concentrated aqueous surfactant solutions}, series = {RSC Advances}, volume = {9}, journal = {RSC Advances}, publisher = {RSC Publishing}, address = {London}, issn = {2046-2069}, doi = {10.1039/C9RA02384D}, pages = {23633 -- 23641}, year = {2019}, abstract = {Due to the enhanced electromagnetic field at the tips of metal nanoparticles, the spiked structure of gold nanostars (AuNSs) is promising for surface-enhanced Raman scattering (SERS). Therefore, the challenge is the synthesis of well designed particles with sharp tips. The influence of different surfactants, i.e., dioctyl sodium sulfosuccinate (AOT), sodium dodecyl sulfate (SDS), and benzylhexadecyldimethylammonium chloride (BDAC), as well as the combination of surfactant mixtures on the formation of nanostars in the presence of Ag⁺ ions and ascorbic acid was investigated. By varying the amount of BDAC in mixed micelles the core/spike-shell morphology of the resulting AuNSs can be tuned from small cores to large ones with sharp and large spikes. The concomitant red-shift in the absorption toward the NIR region without losing the SERS enhancement enables their use for biological applications and for time-resolved spectroscopic studies of chemical reactions, which require a permanent supply with a fresh and homogeneous solution. HRTEM micrographs and energy-dispersive X-ray (EDX) experiments allow us to verify the mechanism of nanostar formation according to the silver underpotential deposition on the spike surface in combination with micelle adsorption.}, language = {en} } @phdthesis{Sarhan2019, author = {Sarhan, Radwan Mohamed}, title = {Plasmon-driven photocatalytic reactions monitored by surface-enhanced Raman spectroscopy}, doi = {10.25932/publishup-43330}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-433304}, school = {Universit{\"a}t Potsdam}, year = {2019}, abstract = {Plasmonic metal nanostructures can be tuned to efficiently interact with light, converting the photons into energetic charge carriers and heat. Therefore, the plasmonic nanoparticles such as gold and silver nanoparticles act as nano-reactors, where the molecules attached to their surfaces benefit from the enhanced electromagnetic field along with the generated energetic charge carriers and heat for possible chemical transformations. Hence, plasmonic chemistry presents metal nanoparticles as a unique playground for chemical reactions on the nanoscale remotely controlled by light. However, defining the elementary concepts behind these reactions represents the main challenge for understanding their mechanism in the context of the plasmonically assisted chemistry. Surface-enhanced Raman scattering (SERS) is a powerful technique employing the plasmon-enhanced electromagnetic field, which can be used for probing the vibrational modes of molecules adsorbed on plasmonic nanoparticles. In this cumulative dissertation, I use SERS to probe the dimerization reaction of 4-nitrothiophenol (4-NTP) as a model example of plasmonic chemistry. I first demonstrate that plasmonic nanostructures such as gold nanotriangles and nanoflowers have a high SERS efficiency, as evidenced by probing the vibrations of the rhodamine dye R6G and the 4-nitrothiophenol 4-NTP. The high signal enhancement enabled the measurements of SERS spectra with a short acquisition time, which allows monitoring the kinetics of chemical reactions in real time. To get insight into the reaction mechanism, several time-dependent SERS measurements of the 4-NTP have been performed under different laser and temperature conditions. Analysis of the results within a mechanistic framework has shown that the plasmonic heating significantly enhances the reaction rate, while the reaction is probably initiated by the energetic electrons. The reaction was shown to be intensity-dependent, where a certain light intensity is required to drive the reaction. Finally, first attempts to scale up the plasmonic catalysis have been performed showing the necessity to achieve the reaction threshold intensity. Meanwhile, the induced heat needs to quickly dissipate from the reaction substrate, since otherwise the reactants and the reaction platform melt. This study might open the way for further work seeking the possibilities to quickly dissipate the plasmonic heat generated during the reaction and therefore, scaling up the plasmonic catalysis.}, language = {en} } @article{SarhanElNagarAbouserieetal.2019, author = {Sarhan, Radwan Mohamed and El-Nagar, Gumaa A. and Abouserie, Ahed and Roth, Christina}, title = {Silver-Iron Hierarchical Microflowers for Highly Efficient H2O2 Nonenzymatic Amperometric Detection}, series = {ACS sustainable chemistry \& engineering}, volume = {7}, journal = {ACS sustainable chemistry \& engineering}, number = {4}, publisher = {American Chemical Society}, address = {Washington}, issn = {2168-0485}, doi = {10.1021/acssuschemeng.8b06182}, pages = {4335 -- 4342}, year = {2019}, abstract = {This study addresses the fabrication of monodispersed iron-doped silver meso-hierarchical flower-like structures via a facile chemical procedure. The morphology of the obtained silver particles has been tuned by changing the concentration of the structure-directing agent (malonic acid). Ball-shaped silver particles were formed in the absence of malonic acid (MA), while silver particles with craspedia-globosa, chrysanthemum, and dahlia flower-like structures were obtained in the presence of 0.2, 0.5, and 1 mM malonic acid, respectively. The doping of these dahlia flower-like structures with trace amounts of iron (<= 5\% Fe weight percent) led to the formation of globe-amaranth iron-doped microflowers (AgFeamaranth). The as-prepared AgFeamaranth exhibited better performance as a nonenzymatic H2O2 sensor compared to undoped silver particles as demonstrated by their higher catalytic activity and stability together with superior sensitivity (1350 mu M-1 cm(-2), 61 times higher) and lower detection limit (0.1 mu M). These enhancements are attributed to the AgFe unique flower-like structures and to the fact that the iron dopants provide a higher number of electroactive sites and reduce the charge transfer resistance of H2O2 reduction. Additionally, the good stability of AgFe is believed to originate from the faster detachment rate of the in situ-formed gas bubbles from their surfaces compared to undoped silver structures.}, language = {en} } @article{SarhanKoopmanPudelletal.2019, author = {Sarhan, Radwan Mohamed and Koopman, Wouter-Willem Adriaan and Pudell, Jan-Etienne and Stete, Felix and R{\"o}ssle, Matthias and Herzog, Marc and Schmitt, Clemens Nikolaus Zeno and Liebig, Ferenc and Koetz, Joachim and Bargheer, Matias}, title = {Scaling up nanoplasmon catalysis}, series = {The journal of physical chemistry : C, Nanomaterials and interfaces}, volume = {123}, journal = {The journal of physical chemistry : C, Nanomaterials and interfaces}, number = {14}, publisher = {American Chemical Society}, address = {Washington}, issn = {1932-7447}, doi = {10.1021/acs.jpcc.8b12574}, pages = {9352 -- 9357}, year = {2019}, abstract = {Nanoscale heating by optical excitation of plasmonic nanoparticles offers a new perspective of controlling chemical reactions, where heat is not spatially uniform as in conventional macroscopic heating but strong temperature gradients exist around microscopic hot spots. In nanoplasmonics, metal particles act as a nanosource of light, heat, and energetic electrons driven by resonant excitation of their localized surface plasmon resonance. As an example of the coupling reaction of 4-nitrothiophenol into 4,4′-dimercaptoazobenzene, we show that besides the nanoscopic heat distribution at hot spots, the microscopic distribution of heat dictated by the spot size of the light focus also plays a crucial role in the design of plasmonic nanoreactors. Small sizes of laser spots enable high intensities to drive plasmon-assisted catalysis. This facilitates the observation of such reactions by surface-enhanced Raman scattering, but it challenges attempts to scale nanoplasmonic chemistry up to large areas, where the excess heat must be dissipated by one-dimensional heat transport.}, language = {en} } @article{SarhanKoopmanSchuetzetal.2019, author = {Sarhan, Radwan Mohamed and Koopman, Wouter-Willem Adriaan and Schuetz, Roman and Schmid, Thomas and Liebig, Ferenc and Koetz, Joachim and Bargheer, Matias}, title = {The importance of plasmonic heating for the plasmondriven photodimerization of 4-nitrothiophenol}, series = {Scientific Reports}, volume = {9}, journal = {Scientific Reports}, publisher = {Macmillan Publishers Limited}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-019-38627-2}, pages = {8}, year = {2019}, abstract = {Metal nanoparticles form potent nanoreactors, driven by the optical generation of energetic electrons and nanoscale heat. The relative influence of these two factors on nanoscale chemistry is strongly debated. This article discusses the temperature dependence of the dimerization of 4-nitrothiophenol (4-NTP) into 4,4′-dimercaptoazobenzene (DMAB) adsorbed on gold nanoflowers by Surface-Enhanced Raman Scattering (SERS). Raman thermometry shows a significant optical heating of the particles. The ratio of the Stokes and the anti-Stokes Raman signal moreover demonstrates that the molecular temperature during the reaction rises beyond the average crystal lattice temperature of the plasmonic particles. The product bands have an even higher temperature than reactant bands, which suggests that the reaction proceeds preferentially at thermal hot spots. In addition, kinetic measurements of the reaction during external heating of the reaction environment yield a considerable rise of the reaction rate with temperature. Despite this significant heating effects, a comparison of SERS spectra recorded after heating the sample by an external heater to spectra recorded after prolonged illumination shows that the reaction is strictly photo-driven. While in both cases the temperature increase is comparable, the dimerization occurs only in the presence of light. Intensity dependent measurements at fixed temperatures confirm this finding.}, language = {en} }