@misc{BanerjeeSaalfrank2013, author = {Banerjee, Shiladitya and Saalfrank, Peter}, title = {Vibrationally resolved absorption, emission and resonance Raman spectra of diamondoids}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-94542}, pages = {144 -- 158}, year = {2013}, abstract = {The time-dependent approach to electronic spectroscopy, as popularized by Heller and coworkers in the 1980's, is applied here in conjunction with linear-response, time-dependent density functional theory to study vibronic absorption, emission and resonance Raman spectra of several diamondoids. Two-state models, the harmonic and the Condon approximations, are used for the calculations, making them easily applicable to larger molecules. The method is applied to nine pristine lower and higher diamondoids: adamantane, diamantane, triamantane, and three isomers each of tetramantane and pentamantane. We also consider a hybrid species "Dia = Dia" - a shorthand notation for a recently synthesized molecule comprising two diamantane units connected by a C[double bond, length as m-dash]C double bond. We resolve and interpret trends in optical and vibrational properties of these molecules as a function of their size, shape, and symmetry, as well as effects of "blending" with sp2-hybridized C-atoms. Time-dependent correlation functions facilitate the computations and shed light on the vibrational dynamics following electronic transitions.}, language = {en} } @article{LuoUtechtDokicetal.2011, author = {Luo, Ying and Utecht, Manuel Martin and Dokic, Jadranka and Korchak, Sergey and Vieth, Hans-Martin and Haag, Rainer and Saalfrank, Peter}, title = {Cis-trans isomerisation of substituted aromatic imines a comparative experimental and theoretical study}, series = {ChemPhysChem : a European journal of chemical physics and physical chemistry}, volume = {12}, journal = {ChemPhysChem : a European journal of chemical physics and physical chemistry}, number = {12}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1439-4235}, doi = {10.1002/cphc.201100179}, pages = {2311 -- 2321}, year = {2011}, abstract = {The cis-trans isomerisation of N-benzylideneaniline (NBA) and derivatives containing a central C=N bond has been investigated experimentally and theoretically. Eight different NBA molecules in three different solvents were irradiated to enforce a photochemical trans (hv) -> cis isomerisation and the kinetics of the thermal backreaction cis (Delta)-> trans were determined by NMR spectroscopy measurements in the temperature range between 193 and 288 K. Theoretical calculations using density functional theory and Eyring transition-state theory were carried out for 12 different NBA species in the gas phase and three different solvents to compute thermal isomerisation rates of the thermal back reaction. While the computed absolute rates are too large, they reveal and explain experimental trends. Time-dependent density functional theory provides optical spectra for vertical transitions and excitation energy differences between trans and cis forms. Together with isomerisation rates, the latter can be used to identify "optimal switches" with good photochromicity and reasonable thermal stability.}, language = {en} }