@phdthesis{Ba2006, author = {Ba, Jianhua}, title = {Nonaqueous synthesis of metal oxide nanoparticles and their assembly into mesoporous materials}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-10173}, school = {Universit{\"a}t Potsdam}, year = {2006}, abstract = {This thesis mainly consist of two parts, the synthesis of several kinds of technologically interesting crystalline metal oxide nanoparticles via nonaqueous sol-gel process and the formation of mesoporous metal oxides using some of these nanoparticles as building blocks via evaporation induced self-assembly (EISA) technique. In the first part, the experimental procedures and characterization results of successful syntheses of crystalline tin oxide and tin doped indium oxide (ITO) nanoparticles are reported. SnO2 nanoparticles exhibit monodisperse particle size (3.5 nm in average), high crystallinity and particularly high dispersibility in THF, which enable them to become the ideal particulate precursor for the formation of mesoporous SnO2. ITO nanoparticles possess uniform particle morphology, narrow particle size distribution (5-10 nm), high crystallinity as well as high electrical conductivity. The synthesis approaches and characterization of various mesoporous metal oxides, including TiO2, SnO2, mixture of CeO2 and TiO2, mixture of BaTiO3 and SnO2, are reported in the second part of this thesis. Mesoporous TiO2 and SnO2 are presented as highlights of this part. Mesoporous TiO2 was produced in the forms of both films and bulk material. In the case of mesoporous SnO2, the study was focused on the high order of the porous structure. All these mesoporous metal oxides show high crystallinity, high surface area and rather monodisperse pore sizes, which demonstrate the validity of EISA process and the usage of preformed crystalline nanoparticles as nanobuilding blocks (NBBs) to produce mesoporous metal oxides.}, subject = {Nanopartikel}, language = {en} } @phdthesis{Boerner2009, author = {B{\"o}rner, Hans Gerhard}, title = {Exploiting self-organization and functionality of peptides for polymer science}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-29066}, school = {Universit{\"a}t Potsdam}, year = {2009}, abstract = {Controlling interactions in synthetic polymers as precisely as in proteins would have a strong impact on polymer science. Advanced structural and functional control can lead to rational design of, integrated nano- and microstructures. To achieve this, properties of monomer sequence defined oligopeptides were exploited. Through their incorporation as monodisperse segments into synthetic polymers we learned in recent four years how to program the structure formation of polymers, to adjust and exploit interactions in such polymers, to control inorganic-organic interfaces in fiber composites and induce structure in Biomacromolecules like DNA for biomedical applications.}, language = {en} } @book{Etz2007, author = {Etz, Swen}, title = {M{\"o}glichkeiten und Grenzen der Verbesserung des nachhaltigen Kanalunterhalts durch b{\"a}uerliche Selbstorganisation : das Beispiel der OERT im Bew{\"a}sserungsgebiet des Office du Niger/Mali}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-939469-55-1}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-12722}, publisher = {Universit{\"a}t Potsdam}, pages = {110}, year = {2007}, abstract = {Wasser erweist sich immer mehr als eine der kostbarsten und zuk{\"u}nftig knappsten Ressourcen auf unserem Planeten. Effizienter Umgang mit dieser Ressource ist deshalb auch in Großbew{\"a}sserungsgebieten weltweit zu einer obersten Priorit{\"a}t geworden. Dabei spielt verst{\"a}rkte Mitbestimmung und Partizipation der lokalen Bev{\"o}lkerung erwiesenerweise eine wichtige Rolle. In einer viermonatigen Feldstudie wurden im Bew{\"a}sserungsgebiet Office du Niger, Mali, in zwei D{\"o}rfern die {\"o}rtlichen „Bauernorganisationen zum Unterhalt des terti{\"a}ren Bew{\"a}sserungssystems" evaluiert. Welchen Nutzen und welche Erfolge k{\"o}nnen sie vorweisen? Wo liegen Probleme in Umsetzung und Akzeptanz der lokalen Organisationsstrukturen? Die vorliegende Arbeit stellt umfassend die M{\"o}glichkeiten und Grenzen b{\"a}uerlicher Selbstorganisation zum nachhaltigen Kanalunterhalt in der Forschungsregion dar, ergr{\"u}ndet die vorliegenden Problemfaktoren und zeigt Schritte zur {\"U}berwindung derselbigen auf.}, language = {de} } @phdthesis{Garnweitner2005, author = {Garnweitner, Georg}, title = {Nichtw{\"a}ssrige Synthese und Bildungsmechanismus von {\"U}bergangsmetalloxid-Nanopartikeln = Nonaqueous synthesis of transition-metal oxide nanoparticles and their formation mechanism}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-5892}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {In this work, the nonaqueous synthesis of binary and ternary metal oxide nanoparticles is investigated for a number of technologically important materials. A strong focus was put on studying the reaction mechanisms leading to particle formation upon solvothermal treatment of the precursors, as an understanding of the formation processes is expected to be crucial for a better control of the systems, offering the potential to tailor particle size and morphology. The synthesis of BaTiO3 was achieved by solvothermal reaction of metallic barium and titanium isopropoxide in organic solvents. Phase-pure, highly crystalline particles about 6 nm in size resulted in benzyl alcohol, whereas larger particles could be obtained in ketones such as acetone or acetophenone. In benzyl alcohol, a novel mechanism was found to lead to BaTiO3, involving a C-C coupling step between the isopropoxide ligand and the benzylic carbon of the solvent. The resulting coupling product, 4-phenyl-2-butanol, is found in almost stoichiometric yield. The particle formation in ketones proceeds via a Ti-mediated aldol condensation of the solvent, involving formal elimination of water which induces formation of the oxide. These processes also occurred when reacting solely the titanium alkoxide with ketones or aldehydes, leading to highly crystalline anatase nanoparticles for all tested solvents. In ketones, also the synthesis of nanopowders of lead zirconate titanate (PZT) was achieved, which were initially amorphous but could be crystallized by calcination at moderate temperatures. Additionally, PZT films were prepared by simply casting a suspension of the powder onto Si substrates followed by calcination.Solvothermal synthesis however is not restricted to alkoxides as precursors but is also achieved from metal acetylacetonates. The use of benzylamine as solvent proved particularly versatile, making possible the synthesis of nanocrystalline In2O3, Ga2O3, ZnO and iron oxide from the respective acetylacetonates. During the synthesis, the acetylacetonate ligand undergoes a solvolysis under C-C cleavage, resulting in metal-bound enolate ligands which, in analogy to the synthesis in ketones, induce ketimine and aldol condensation reactions. In the last section of this work, surface functionalization of anatase nanoparticles is explored. The particles were first capped with various organic ligands via a facile in situ route, which resulted in altered properties such as enhanced dispersibility in various solvents. In a second step, short functional oligopeptide segments were attached to the particles by means of a catechol linker to achieve advanced self-assembly properties.}, subject = {Nanopartikel}, language = {en} } @phdthesis{Gress2008, author = {Greß, Anja}, title = {Funktionalisierte Poly(2-oxazoline) : kontrollierte Synthese, bioinspirierte Strukturbildung und Anwendungen}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-18646}, school = {Universit{\"a}t Potsdam}, year = {2008}, abstract = {Funktionalisierte Poly(2-oxazoline) als neue Materialien stellen sowohl unter strukturellen Gesichtspunkten als auch im Hinblick auf potentielle Anwendungen eine interessante Polymerklasse dar. Die Ausbildung von hierarchischen Strukturen mit Poly(2-oxazolinen) {\"u}ber intermolekulare Wasserstoffbr{\"u}ckenbindungen ist hierbei ein bisher nicht beachteter Aspekt. {\"U}ber einen bioinspirierten Ansatz sollten gezielt funktionelle Gruppen, die f{\"u}r einen hierarchischen Aufbau, z.B. in Proteinen, verantwortlich sind, in vereinfachter Weise auf die synthetische Substanzklasse der Poly(2-oxazoline) {\"u}bertragen werden. Die vorliegende Arbeit besch{\"a}ftigt sich mit der modularen Synthese neuer, funktionalisierter Poly(2-oxazolin) Homo- und Copolymere. Ausgehend von der Synthese von 2-(3-Butenyl)-2-oxazolin wurden definierte Pr{\"a}polymere in einer kationischen Isomerisierungspolymerisation unter kontrolliert/„lebenden" Bedingungen hergestellt. In einer anschließenden „Thio-Click" (Thiol-En-Reaktion) Modifizierungsreaktion wurden die gew{\"u}nschten funktionellen Gruppen quantitativ eingef{\"u}hrt. Hydroxylierte Poly(2-oxazoline) wurden hinsichtlich ihres Aggregationsverhaltens in Wasser untersucht. Bereits die jeweiligen Homopolymere bildeten aufgrund von intermolekularen Wasserstoffbr{\"u}ckenbindungen supramolekulare tubul{\"a}re Nanofasern aus. Durch Einsatz verschiedener analytischer Methoden konnte die innere Struktur der Nanor{\"o}hren beschrieben und ein entsprechendes Modell aufgestellt werden. Die dargestellten funktionellen Poly(2-oxazoline) wurden hinsichtlich ihrer Anwendung als potentielle, synthetische „antifreeze additives" untersucht. Alle Polymere besitzen eine ausgepr{\"a}gte Tendenz zur Nukleierung von Wasser und f{\"u}hren daher zu signifikanten {\"A}nderungen der Eismorphologie. Des weiteren wurde ein carboxyliertes Derivat zur biomimetischen Mineralisation von Kalziumcarbonat eingesetzt und nach ph{\"a}nomenologischen Gesichtspunkten untersucht.}, language = {de} } @phdthesis{Justynska2005, author = {Justynska, Justyna}, title = {Towards a library of functional block copolymers : synthesis and colloidal properties}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-5907}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {Understanding the principles of self-organisation exhibited by block copolymers requires the combination of synthetic and physicochemical knowledge. The ability to synthesise block copolymers with desired architecture facilitates the ability to manipulate their aggregation behaviour, thus providing the key to nanotechnology. Apart from relative block volumes, the size and morphology of the produced nanostructures is controlled by the effective incompatibility between the different blocks. Since polymerisation techniques allowing for the synthesis of well-defined block copolymers are restricted to a limited number of monomers, the ability to tune the incompatibility is very limited. Nevertheless, Polymer Analogue Reactions can offer another possibility for the production of functional block copolymers by chemical modifications of well-defined polymer precursors. Therefore, by applying appropriate modification methods both volume fractions and incompatibility, can be adjusted. Moreover, copolymers with introduced functional units allow utilization of the concept of molecular recognition in the world of synthetic polymers. The present work describes a modular synthetic approach towards functional block copolymers. Radical addition of functional mercaptanes was employed for the introduction of diverse functional groups to polybutadiene-containing block copolymers. Various modifications of 1,2-polybutadiene-poly(ethylene oxide) block copolymer precursors are described in detail. Furthermore, extension of the concept to 1,2-polybutadiene-polystyrene block copolymers is demonstrated. Further investigations involved the self-organisation of the modified block copolymers. Formed aggregates in aqueous solutions of block copolymers with introduced carboxylic acid, amine and hydroxyl groups as well as fluorinated chains were characterised. Study of the aggregation behaviour allowed general conclusions to be drawn regarding the influence of the introduced groups on the self-organisation of the modified copolymers. Finally, possibilities for the formation of complexes, based on electrostatic or hydrogen-bonding interactions in mixtures of block copolymers bearing mutually interacting functional groups, were investigated.}, subject = {Blockcopolymere}, language = {en} } @phdthesis{Kubowicz2005, author = {Kubowicz, Stephan}, title = {Design and characterization of multicompartment micelles in aqueous solution}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-5752}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {Self-assembly of polymeric building blocks is a powerful tool for the design of novel materials and structures that combine different properties and may respond to external stimuli. In the past decades, most studies were focused on the self-assembly of amphiphilic diblock copolymers in solution. The dissolution of these block copolymers in a solvent selective for one block results mostly in the formation of micelles. The micellar structure of diblock copolymers is inherently limited to a homogeneous core surrounded by a corona, which keeps the micelle in solution. Thus, for drug-delivery applications, such structures only offer a single domain (the hydrophobic inner core) for drug entrapment. Whereas multicompartment micelles composed of a water-soluble shell and a segregated hydrophobic core are novel, interesting morphologies for applications in a variety of fields including medicine, pharmacy and biotechnology. The separated incompatible compartments of the hydrophobic core could enable the selective entrapment and release of various hydrophobic drugs while the hydrophilic shell would permit the stabilization of these nanostructures in physiological media. However, so far, the preparation and control of stable multicompartment micellar systems are in the first stages and the number of morphological studies concerning such micelles is rather low. Thus considerably little is known about their exact inner structures. In the present study, we concentrate on four different approaches for the preparation of multicompartment micelles by self-assembly in aqueous media. A similarity of all approaches was that hydrocarbon and fluorocarbon blocks were selected for all employed copolymers since such segments tend to be strongly incompatible, and thus favor the segregation into distinct domains. Our studies have shown that the self-assembly of the utilized copolymers in aqueous solution leads in three cases to the formation of multicompartment micelles. As expected the shape and size of the micelles depend on the molecular architecture and to some extent also on the way of preparation. These novel structured colloids may serve as models as well as mimics for biological structures such as globular proteins, and may open interesting opportunities for nanotechnology applications.}, subject = {Amphiphile Verbindungen}, language = {en} } @phdthesis{Miasnikova2012, author = {Miasnikova, Anna}, title = {New hydrogel forming thermo-responsive block copolymers of increasing structural complexity}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-59953}, school = {Universit{\"a}t Potsdam}, year = {2012}, abstract = {This work describes the synthesis and characterization of stimuli-responsive polymers made by reversible addition-fragmentation chain transfer (RAFT) polymerization and the investigation of their self-assembly into "smart" hydrogels. In particular the hydrogels were designed to swell at low temperature and could be reversibly switched to a collapsed hydrophobic state by rising the temperature. Starting from two constituents, a short permanently hydrophobic polystyrene (PS) block and a thermo-responsive poly(methoxy diethylene glycol acrylate) (PMDEGA) block, various gelation behaviors and switching temperatures were achieved. New RAFT agents bearing tert-butyl benzoate or benzoic acid groups, were developed for the synthesis of diblock, symmetrical triblock and 3-arm star block copolymers. Thus, specific end groups were attached to the polymers that facilitate efficient macromolecular characterization, e.g by routine 1H-NMR spectroscopy. Further, the carboxyl end-groups allowed functionalizing the various polymers by a fluorophore. Because reports on PMDEGA have been extremely rare, at first, the thermo-responsive behavior of the polymer was investigated and the influence of factors such as molar mass, nature of the end-groups, and architecture, was studied. The use of special RAFT agents enabled the design of polymer with specific hydrophobic and hydrophilic end-groups. Cloud points (CP) of the polymers proved to be sensitive to all molecular variables studied, namely molar mass, nature and number of the end-groups, up to relatively high molar masses. Thus, by changing molecular parameters, CPs of the PMDEGA could be easily adjusted within the physiological interesting range of 20 to 40°C. A second responsivity, namely to light, was added to the PMDEGA system via random copolymerization of MDEGA with a specifically designed photo-switchable azobenzene acrylate. The composition of the copolymers was varied in order to determine the optimal conditions for an isothermal cloud point variation triggered by light. Though reversible light-induced solubility changes were achieved, the differences between the cloud points before and after the irradiation were small. Remarkably, the response to light differed from common observations for azobenzene-based systems, as CPs decreased after UV-irradiation, i.e with increasing content of cis-azobenzene units. The viscosifying and gelling abilities of the various block copolymers made from PS and PMDEGA blocks were studied by rheology. Important differences were observed between diblock copolymers, containing one hydrophobic PS block only, the telechelic symmetrical triblock copolymers made of two associating PS termini, and the star block copolymers having three associating end blocks. Regardless of their hydrophilic block length, diblock copolymers PS11 PMDEGAn were freely flowing even at concentrations as high as 40 wt. \%. In contrast, all studied symmetrical triblock copolymers PS8-PMDEGAn-PS8 formed gels at low temperatures and at concentrations as low as 3.5 wt. \% at best. When heated, these gels underwent a gel-sol transition at intermediate temperatures, well below the cloud point where phase separation occurs. The gel-sol transition shifted to markedly higher transition temperatures with increasing length of the hydrophilic inner block. This effect increased also with the number of arms, and with the length of the hydrophobic end blocks. The mechanical properties of the gels were significantly altered at the cloud point and liquid-like dispersions were formed. These could be reversibly transformed into hydrogels by cooling. This thesis demonstrates that high molar mass PMDEGA is an easily accessible, presumably also biocompatible and at ambient temperature well water-soluble, non-ionic thermo-responsive polymer. PMDEGA can be easily molecularly engineered via the RAFT method, implementing defined end-groups, and producing different, also complex, architectures, such as amphiphilic triblock and star block copolymers, having an analogous structure to associative telechelics. With appropriate design, such amphiphilic copolymers give way to efficient, "smart" viscosifiers and gelators displaying tunable gelling and mechanical properties.}, language = {en} } @phdthesis{Nizardo2018, author = {Nizardo, Noverra Mardhatillah}, title = {Thermoresponsive block copolymers with UCST-behavior aimed at biomedical environments}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-412217}, school = {Universit{\"a}t Potsdam}, pages = {xiii, 134}, year = {2018}, abstract = {Thermoresponsive block copolymers of presumably highly biocompatible character exhibiting upper critical solution temperature (UCST) type phase behavior were developed. In particular, these polymers were designed to exhibit UCST-type cloud points (Tcp) in physiological saline solution (9 g/L) within the physiologically interesting window of 30-50°C. Further, their use as carrier for controlled release purposes was explored. Polyzwitterion-based block copolymers were synthesized by atom transfer radical polymerization (ATRP) via a macroinitiator approach with varied molar masses and co-monomer contents. These block copolymers can self-assemble in the amphiphilic state to form micelles, when the thermoresponsive block experiences a coil-to-globule transition upon cooling. Poly(ethylene glycol) methyl ether (mPEG) was used as the permanently hydrophilic block to stabilize the colloids formed, and polyzwitterions as the thermoresponsive block to promote the temperature-triggered assembly-disassembly of the micellear aggregates at low temperature. Three zwitterionic monomers were used for this studies, namely 3-((2-(methacryloyloxy)ethyl)dimethylammonio)propane-1-sulfonate (SPE), 4-((2-(methacryloyl- oxy)ethyl)dimethylammonio)butane-1-sulfonate (SBE), and 3-((2-(methacryloyloxy)ethyl)- dimethylammonio)propane-1-sulfate) (ZPE). Their (co)polymers were characterized with respect to their molecular structure by proton nuclear magnetic resonance (1H-NMR) and gel permeation chromatography (GPC). Their phase behaviors in pure water as well as in physiological saline were studied by turbidimetry and dynamic light scattering (DLS). These (co)polymers are thermoresponsive with UCST-type phase behavior in aqueous solution. Their phase transition temperatures depend strongly on the molar masses and the incorporation of co-monomers: phase transition temperatures increased with increasing molar masses and content of poorly water-soluble co-monomer. In addition, the presence of salt influenced the phase transition dramatically. The phase transition temperature decreased with increasing salt content in the solution. While the PSPE homopolymers show a phase transition only in pure water, the PZPE homopolymers are able to exhibit a phase transition only in high salinity, as in physiological saline. Although both polyzwitterions have similar chemical structures that differ only in the anionic group (sulfonate group in SPE and sulfate group in ZPE), the water solubility is very different. Therefore, the phase transition temperatures of targeted block copolymers were modulated by using statistical copolymer of SPE and ZPE as thermoresponsive block, and varying the ratio of SPE to ZPE. Indeed, the statistical copolymers of P(SPE-co-ZPE) show phase transitions both in pure water as well as in physiological saline. Surprisingly, it was found that mPEG-b-PSBE block copolymer can display "schizophrenic" behavior in pure water, with the UCST-type cloud point occurring at lower temperature than the LCST-type one. The block copolymer, which satisfied best the boundary conditions, is block copolymer mPEG114-b-P(SPE43-co-ZPE39) with a cloud point of 45°C in physiological saline. Therefore, it was chosen for solubilization studies of several solvatochromic dyes as models of active agents, using the thermoresponsive block copolymer as "smart" carrier. The uptake and release of the dyes were explored by UV-Vis and fluorescence spectroscopy, following the shift of the wavelength of the absorbance or emission maxima at low and high temperature. These are representative for the loaded and released state, respectively. However, no UCST-transition triggered uptake and release of these dyes could be observed. Possibly, the poor affinity of the polybetaines to the dyes in aqueous environtments may be related to the widely reported antifouling properties of zwitterionic polymers.}, language = {en} } @phdthesis{Noack2019, author = {Noack, Sebastian}, title = {Poly(lactide)-based amphiphilic block copolymers}, doi = {10.25932/publishup-43616}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-436168}, school = {Universit{\"a}t Potsdam}, pages = {xvii, 148}, year = {2019}, abstract = {Due to its bioavailability and (bio)degradability, poly(lactide) (PLA) is an interesting polymer that is already being used as packaging material, surgical seam, and drug delivery system. Dependent on various parameters such as polymer composition, amphiphilicity, sample preparation, and the enantiomeric purity of lactide, PLA in an amphiphilic block copolymer can affect the self-assembly behavior dramatically. However, sizes and shapes of aggregates have a critical effect on the interactions between biological and drug delivery systems, where the general understanding of these polymers and their ability to influence self-assembly is of significant interest in science. The first part of this thesis describes the synthesis and study of a series of linear poly(L-lactide) (PLLA) and poly(D-lactide) (PDLA)-based amphiphilic block copolymers with varying PLA (hydrophobic), and poly(ethylene glycol) (PEG) (hydrophilic) chain lengths and different block copolymer sequences (PEG-PLA and PLA-PEG). The PEG-PLA block copolymers were synthesized by ring-opening polymerization of lactide initiated by a PEG-OH macroinitiator. In contrast, the PLA-PEG block copolymers were produced by a Steglich-esterification of modified PLA with PEG-OH. The aqueous self-assembly at room temperature of the enantiomerically pure PLLA-based block copolymers and their stereocomplexed mixtures was investigated by dynamic light scattering (DLS), transmission electron microscopy (TEM), wide-angle X-ray diffraction (WAXD), and differential scanning calorimetry (DSC). Spherical micelles and worm-like structures were produced, whereby the obtained self-assembled morphologies were affected by the lactide weight fraction in the block copolymer and self-assembly time. The formation of worm-like structures increases with decreasing PLA-chain length and arises from spherical micelles, which become colloidally unstable and undergo an epitaxial fusion with other micelles. As shown by DSC experiments, the crystallinity of the corresponding PLA blocks increases within the self-assembly time. However, the stereocomplexed self-assembled structures behave differently from the parent polymers and result in irregular-shaped clusters of spherical micelles. Additionally, time-dependent self-assembly experiments showed a transformation, from already self-assembled morphologies of different shapes to more compact micelles upon stereocomplexation. In the second part of this thesis, with the objective to influence the self-assembly of PLA-based block copolymers and its stereocomplexes, poly(methyl phosphonate) (PMeP) and poly(isopropyl phosphonate) (PiPrP) were produced by ring-opening polymerization to implement an alternative to the hydrophilic block PEG. Although, the 1,8 diazabicyclo[5.4.0]unde 7 ene (DBU) or 1,5,7 triazabicyclo[4.4.0]dec-5-ene (TBD) mediated synthesis of the corresponding poly(alkyl phosphonate)s was successful, however, not so the polymerization of copolymers with PLA-based precursors (PLA-homo polymers, and PEG-PLA block copolymers). Transesterification, obtained by 1H-NMR spectroscopy, between the poly(phosphonate)- and PLA block caused a high-field shifted peak split of the methine proton in the PLA polymer chain, with split intensities depending on the used catalyst (DBU for PMeP, and TBD for PiPrP polymerization). An additional prepared block copolymer PiPrP-PLLA that wasn't affected in its polymer sequence was finally used for self-assembly experiments with PLA-PEG and PEG-PLA mixing. This work provides a comprehensive study of the self-assembly behavior of PLA-based block copolymers influenced by various parameters such as polymer block lengths, self-assembly time, and stereocomplexation of block copolymer mixtures.}, language = {en} }