@article{BufeBekaertHussainetal.2017, author = {Bufe, Aaron and Bekaert, David P. S. and Hussain, Ekbal and Bookhagen, Bodo and Burbank, Douglas W. and Jobe, Jessica Ann Thompson and Chen, Jie and Li, Tao and Liu, Langtao and Gan, Weijun}, title = {Temporal changes in rock uplift rates of folds in the foreland of the Tian Shan and the Pamir from geodetic and geologic data}, series = {Geophysical research letters}, volume = {44}, journal = {Geophysical research letters}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0094-8276}, doi = {10.1002/2017GL073627}, pages = {10977 -- 10987}, year = {2017}, abstract = {Understanding the evolution of continental deformation zones relies on quantifying spatial and temporal changes in deformation rates of tectonic structures. Along the eastern boundary of the Pamir-Tian Shan collision zone, we constrain secular variations of rock uplift rates for a series of five Quaternary detachment- and fault-related folds from their initiation to the modern day. When combined with GPS data, decomposition of interferometric synthetic aperture radar time series constrains the spatial pattern of surface and rock uplift on the folds deforming at decadal rates of 1-5mm/yr. These data confirm the previously proposed basinward propagation of structures during the Quaternary. By fitting our geodetic rates and previously published geologic uplift rates with piecewise linear functions, we find that gradual rate changes over >100kyr can explain the interferometric synthetic aperture radar observations where changes in average uplift rates are greater than similar to 1 mm/yr among different time intervals (similar to 10(1), 10(4-5), and 10(5-6) years).}, language = {en} } @article{LuChengWangetal.2017, author = {Lu, Honghua and Cheng, Lu and Wang, Zhen and Zhang, Tianqi and Lu, Yanwu and Zhao, Junxiang and Li, Youli and Zheng, Xiangmin}, title = {Latest Quaternary rapid river incision across an inactive fold in the northern Chinese Tian Shan foreland}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {179}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2017.10.017}, pages = {167 -- 181}, year = {2017}, abstract = {This work focuses on the incision process over the Tuostai anticline, a fold of the proximal structure Belt I in the northern Chinese Tian Shan foreland, where the Sikeshu River has incised deeply into the alluvial gravels and the fold's underlying bedrock strata. Field investigation and geomorphic mapping define five terraces of the Sikeshu River (designated as T1 to T5 from oldest to youngest) preserved within the Tuostai anticline. 10Be surface exposure dating and optically stimulated luminescence dating constrain stabilization of the highest three terrace surfaces at about 80 ka (T1), 16 ka (T2), and 15 ka (T3), respectively. Around 16 ka, the calculated river incision rates significantly increase from <2 mm/yr to >6 mm/yr. Undeformed longitudinal profiles of terraces T2, T3 and T4 over the Tuostai anticline suggest that this structure may have been tectonically inactive since stabilization of these three terraces. We thus think that the observed rapid river incision over the Tuostai anticline has not been largely forced by tectonic uplift. Instead, the progressively warmer and wetter palaeoclimatic condition within the Tian Shan range and its surrounding area during the period of ∼20-10 ka may have enhanced river incision across the Tuostai anticline. A reduced sediment/water ratio might have lowered the gradient of the Sikeshu River.}, language = {en} }