@misc{GianelliDallaVolta2015, author = {Gianelli, Claudia and Dalla Volta, Riccardo}, title = {Does listening to action-related sentences modulate the activity of the motor system?}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-75173}, year = {2015}, abstract = {The neurophysiological and behavioral correlates of action-related language processing have been debated for long time. A precursor in this field was the study by Buccino et al. (2005) combining transcranial magnetic stimulation (TMS) and behavioral measures (reaction times, RTs) to study the effect of listening to hand- and foot-related sentences. In the TMS experiment, the authors showed a decrease of motor evoked potentials (MEPs) recorded from hand muscles when processing hand-related verbs as compared to foot-related verbs. Similarly, MEPs recorded from leg muscles decreased when participants processed foot-related as compared to hand-related verbs. In the behavioral experiment, using the same stimuli and a semantic decision task the authors found slower RTs when the participants used the body effector (hand or foot) involved in the actual execution of the action expressed by the presented verb to give their motor responses. These findings were interpreted as an interference effect due to a simultaneous involvement of the motor system in both a language and a motor task. Our replication aimed to enlarge the sample size and replicate the findings with higher statistical power. The TMS experiment showed a significant modulation of hand MEPs, but in the sense of a motor facilitation when processing hand-related verbs. On the contrary, the behavioral experiment did not show significant results. The results are discussed within the general debate on the time-course of the modulation of motor cortex during implicit and explicit language processing and in relation to the studies on action observation/understanding.}, language = {en} } @article{GianelliDallaVolta2015, author = {Gianelli, Claudia and Dalla Volta, Riccardo}, title = {Does listening to action-related sentences modulate the activity of the motor system?}, series = {Frontiers in psychology}, volume = {5}, journal = {Frontiers in psychology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-1078}, doi = {10.3389/fpsyg.2014.01511}, pages = {8}, year = {2015}, abstract = {The neurophysiological and behavioral correlates of action-related language processing have been debated for long time. A precursor in this field was the study by Buccino et al. (2005) combining transcranial magnetic stimulation (TMS) and behavioral measures (reaction times, RTs) to study the effect of listening to hand- and foot-related sentences. In the TMS experiment, the authors showed a decrease of motor evoked potentials (MEPs) recorded from hand muscles when processing hand-related verbs as compared to foot-related verbs. Similarly, MEPs recorded from leg muscles decreased when participants processed foot-related as compared to hand-related verbs. In the behavioral experiment, using the same stimuli and a semantic decision task the authors found slower RTs when the participants used the body effector (hand or foot) involved in the actual execution of the action expressed by the presented verb to give their motor responses. These findings were interpreted as an interference effect due to a simultaneous involvement of the motor system in both a language and a motor task. Our replication aimed to enlarge the sample size and replicate the findings with higher statistical power. The TMS experiment showed a significant modulation of hand MEPs, but in the sense of a motor facilitation when processing hand-related verbs. On the contrary, the behavioral experiment did not show significant results. The results are discussed within the general debate on the time-course of the modulation of motor cortex during implicit and explicit language processing and in relation to the studies on action observation/understanding.}, language = {en} } @article{JannaschKroegerAgnolietal.2019, author = {Jannasch, Franziska and Kr{\"o}ger, Janine and Agnoli, Claudia and Barricarte, Aurelio and Boeing, Heiner and Cayssials, Val{\´e}rie and Colorado-Yohar, Sandra and Dahm, Christina C. and Dow, Courtney and Fagherazzi, Guy and Franks, Paul W. and Freisling, Heinz and Gunter, Marc J. and Kerrison, Nicola D. and Key, Timothy J. and Khaw, Kay-Tee and K{\"u}hn, Tilman and Kyro, Cecilie and Mancini, Francesca Romana and Mokoroa, Olatz and Nilsson, Peter and Overvad, Kim and Palli, Domenico and Panico, Salvatore and Quiros Garcia, Jose Ramon and Rolandsson, Olov and Sacerdote, Carlotta and Sanchez, Maria-Jose and Sahrai, Mohammad Sediq and Sch{\"u}bel, Ruth and Sluijs, Ivonne and Spijkerman, Annemieke M. W. and Tjonneland, Anne and Tong, Tammy Y. N. and Tumino, Rosario and Riboli, Elio and Langenberg, Claudia and Sharp, Stephen J. and Forouhi, Nita G. and Schulze, Matthias Bernd and Wareham, Nicholas J.}, title = {Generalizability of a Diabetes-Associated Country-Specific Exploratory Dietary Pattern Is Feasible Across European Populations}, series = {The Journal of Nutrition}, volume = {149}, journal = {The Journal of Nutrition}, number = {6}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0022-3166}, doi = {10.1093/jn/nxz031}, pages = {1047 -- 1055}, year = {2019}, abstract = {Background: Population-specificity of exploratory dietary patterns limits their generalizability in investigations with type 2 diabetes incidence. Objective: The aim of this study was to derive country-specific exploratory dietary patterns, investigate their association with type 2 diabetes incidence, and replicate diabetes-associated dietary patterns in other countries. Methods: Dietary intake data were used, assessed by country-specific questionnaires at baseline of 11,183 incident diabetes cases and 14,694 subcohort members (mean age 52.9 y) from 8 countries, nested within the European Prospective Investigation into Cancer and Nutrition study (mean follow-up time 6.9 y). Exploratory dietary patterns were derived by principal component analysis. HRs for incident type 2 diabetes were calculated by Prentice-weighted Cox proportional hazard regression models. Diabetes-associated dietary patterns were simplified or replicated to be applicable in other countries. A meta-analysis across all countries evaluated the generalizability of the diabetes-association. Results: Two dietary patterns per country/UK-center, of which overall 3 dietary patterns were diabetes-associated, were identified. A risk-lowering French dietary pattern was not confirmed across other countries: pooled HRFrance per 1 SD: 1.00; 95\% CI: 0.90, 1.10. Risk-increasing dietary patterns, derived in Spain and UK-Norfolk, were confirmed, but only the latter statistically significantly: HRSpain: 1.09; 95\% CI: 0.97, 1.22 and HRUK-Norfolk: 1.12; 95\% CI: 1.04, 1.20. Respectively, this dietary pattern was characterized by relatively high intakes of potatoes, processed meat, vegetable oils, sugar, cake and cookies, and tea. Conclusions: Only few country/center-specific dietary patterns (3 of 18) were statistically significantly associated with diabetes incidence in this multicountry European study population. One pattern, whose association with diabetes was confirmed across other countries, showed overlaps in the food groups potatoes and processed meat with identified diabetes-associated dietary patterns from other studies. The study demonstrates that replication of associations of exploratory patterns with health outcomes is feasible and a necessary step to overcome population-specificity in associations from such analyses.}, language = {en} } @techreport{BrodeurMikolaCooketal.2024, type = {Working Paper}, author = {Brodeur, Abel and Mikola, Derek and Cook, Nikolai and Brailey, Thomas and Briggs, Ryan and Gendre, Alexandra de and Dupraz, Yannick and Fiala, Lenka and Gabani, Jacopo and Gauriot, Romain and Haddad, Joanne and Lima, Goncalo and Ankel-Peters, J{\"o}rg and Dreber, Anna and Campbell, Douglas and Kattan, Lamis and Fages, Diego Marino and Mierisch, Fabian and Sun, Pu and Wright, Taylor and Connolly, Marie and Hoces de la Guardia, Fernando and Johannesson, Magnus and Miguel, Edward and Vilhuber, Lars and Abarca, Alejandro and Acharya, Mahesh and Adjisse, Sossou Simplice and Akhtar, Ahwaz and Lizardi, Eduardo Alberto Ramirez and Albrecht, Sabina and Andersen, Synve Nygaard and Andlib, Zubaria and Arrora, Falak and Ash, Thomas and Bacher, Etienne and Bachler, Sebastian and Bacon, F{\´e}lix and Bagues, Manuel and Balogh, Timea and Batmanov, Alisher and Barschkett, Mara and Basdil, B. Kaan and Dower, Jaromneda and Castek, Ondrej and Caviglia-Harris, Jill and Strand, Gabriella Chauca and Chen, Shi and Chzhen, Asya and Chung, Jong and Collins, Jason and Coppock, Alexander and Cordeau, Hugo and Couillard, Ben and Crechet, Jonathan and Crippa, Lorenzo and Cui, Jeanne and Czymara, Christian and Daarstad, Haley and Dao, Danh Chi and Dao, Dong and Schmandt, Marco David and Linde, Astrid de and Melo, Lucas De and Deer, Lachlan and Vera, Micole De and Dimitrova, Velichka and Dollbaum, Jan Fabian and Dollbaum, Jan Matti and Donnelly, Michael and Huynh, Luu Duc Toan and Dumbalska, Tsvetomira and Duncan, Jamie and Duong, Kiet Tuan and Duprey, Thibaut and Dworschak, Christoph and Ellingsrud, Sigmund and Elminejad, Ali and Eissa, Yasmine and Erhart, Andrea and Etingin-Frati, Giulian and Fatemi-Pour, Elaheh and Federice, Alexa and Feld, Jan and Fenig, Guidon and Firouzjaeiangalougah, Mojtaba and Fleisje, Erlend and Fortier-Chouinard, Alexandre and Engel, Julia Francesca and Fries, Tilman and Fortier, Reid and Fr{\´e}chet, Nadjim and Galipeau, Thomas and Gallegos, Sebasti{\´a}n and Gangji, Areez and Gao, Xiaoying and Garnache, Clo{\´e} and G{\´a}sp{\´a}r, Attila and Gavrilova, Evelina and Ghosh, Arijit and Gibney, Garreth and Gibson, Grant and Godager, Geir and Goff, Leonard and Gong, Da and Gonz{\´a}lez, Javier and Gretton, Jeremy and Griffa, Cristina and Grigoryeva, Idaliya and Grtting, Maja and Guntermann, Eric and Guo, Jiaqi and Gugushvili, Alexi and Habibnia, Hooman and H{\"a}ffner, Sonja and Hall, Jonathan D. and Hammar, Olle and Kordt, Amund Hanson and Hashimoto, Barry and Hartley, Jonathan S. and Hausladen, Carina I. and Havr{\´a}nek, Tom{\´a}š and Hazen, Jacob and He, Harry and Hepplewhite, Matthew and Herrera-Rodriguez, Mario and Heuer, Felix and Heyes, Anthony and Ho, Anson T. Y. and Holmes, Jonathan and Holzknecht, Armando and Hsu, Yu-Hsiang Dexter and Hu, Shiang-Hung and Huang, Yu-Shiuan and Huebener, Mathias and Huber, Christoph and Huynh, Kim P. and Irsova, Zuzana and Isler, Ozan and Jakobsson, Niklas and Frith, Michael James and Jananji, Rapha{\"e}l and Jayalath, Tharaka A. and Jetter, Michael and John, Jenny and Forshaw, Rachel Joy and Juan, Felipe and Kadriu, Valon and Karim, Sunny and Kelly, Edmund and Dang, Duy Khanh Hoang and Khushboo, Tazia and Kim, Jin and Kjellsson, Gustav and Kjelsrud, Anders and Kotsadam, Andreas and Korpershoek, Jori and Krashinsky, Lewis and Kundu, Suranjana and Kustov, Alexander and Lalayev, Nurlan and Langlois, Audr{\´e}e and Laufer, Jill and Lee-Whiting, Blake and Leibing, Andreas and Lenz, Gabriel and Levin, Joel and Li, Peng and Li, Tongzhe and Lin, Yuchen and Listo, Ariel and Liu, Dan and Lu, Xuewen and Lukmanova, Elvina and Luscombe, Alex and Lusher, Lester R. and Lyu, Ke and Ma, Hai and M{\"a}der, Nicolas and Makate, Clifton and Malmberg, Alice and Maitra, Adit and Mandas, Marco and Marcus, Jan and Margaryan, Shushanik and M{\´a}rk, Lili and Martignano, Andres and Marsh, Abigail and Masetto, Isabella and McCanny, Anthony and McManus, Emma and McWay, Ryan and Metson, Lennard and Kinge, Jonas Minet and Mishra, Sumit and Mohnen, Myra and M{\"o}ller, Jakob and Montambeault, Rosalie and Montpetit, S{\´e}bastien and Morin, Louis-Philippe and Morris, Todd and Moser, Scott and Motoki, Fabio and Muehlenbachs, Lucija and Musulan, Andreea and Musumeci, Marco and Nabin, Munirul and Nchare, Karim and Neubauer, Florian and Nguyen, Quan M. P. and Nguyen, Tuan and Nguyen-Tien, Viet and Niazi, Ali and Nikolaishvili, Giorgi and Nordstrom, Ardyn and N{\"u}, Patrick and Odermatt, Angela and Olson, Matt and ien, Henning and {\"O}lkers, Tim and Vert, Miquel Oliver i. and Oral, Emre and Oswald, Christian and Ousman, Ali and {\"O}zak, {\"O}mer and Pandey, Shubham and Pavlov, Alexandre and Pelli, Martino and Penheiro, Romeo and Park, RyuGyung and Martel, Eva P{\´e}rez and Petrovičov{\´a}, Tereza and Phan, Linh and Prettyman, Alexa and Proch{\´a}zka, Jakub and Putri, Aqila and Quandt, Julian and Qiu, Kangyu and Nguyen, Loan Quynh Thi and Rahman, Andaleeb and Rea, Carson H. and Reiremo, Adam and Ren{\´e}e, La{\"e}titia and Richardson, Joseph and Rivers, Nicholas and Rodrigues, Bruno and Roelofs, William and Roemer, Tobias and Rogeberg, Ole and Rose, Julian and Roskos-Ewoldsen, Andrew and Rosmer, Paul and Sabada, Barbara and Saberian, Soodeh and Salamanca, Nicolas and Sator, Georg and Sawyer, Antoine and Scates, Daniel and Schl{\"u}ter, Elmar and Sells, Cameron and Sen, Sharmi and Sethi, Ritika and Shcherbiak, Anna and Sogaolu, Moyosore and Soosalu, Matt and Srensen, Erik and Sovani, Manali and Spencer, Noah and Staubli, Stefan and Stans, Renske and Stewart, Anya and Stips, Felix and Stockley, Kieran and Strobel, Stephenson and Struby, Ethan and Tang, John and Tanrisever, Idil and Yang, Thomas Tao and Tastan, Ipek and Tatić, Dejan and Tatlow, Benjamin and Seuyong, F{\´e}raud Tchuisseu and Th{\´e}riault, R{\´e}mi and Thivierge, Vincent and Tian, Wenjie and Toma, Filip-Mihai and Totarelli, Maddalena and Tran, Van-Anh and Truong, Hung and Tsoy, Nikita and Tuzcuoglu, Kerem and Ubfal, Diego and Villalobos, Laura and Walterskirchen, Julian and Wang, Joseph Taoyi and Wattal, Vasudha and Webb, Matthew D. and Weber, Bryan and Weisser, Reinhard and Weng, Wei-Chien and Westheide, Christian and White, Kimberly and Winter, Jacob and Wochner, Timo and Woerman, Matt and Wong, Jared and Woodard, Ritchie and Wroński, Marcin and Yazbeck, Myra and Yang, Gustav Chung and Yap, Luther and Yassin, Kareman and Ye, Hao and Yoon, Jin Young and Yurris, Chris and Zahra, Tahreen and Zaneva, Mirela and Zayat, Aline and Zhang, Jonathan and Zhao, Ziwei and Yaolang, Zhong}, title = {Mass reproducibility and replicability}, series = {I4R discussion paper series}, journal = {I4R discussion paper series}, number = {107}, publisher = {Institute for Replication}, address = {Essen}, issn = {2752-1931}, pages = {250}, year = {2024}, abstract = {This study pushes our understanding of research reliability by reproducing and replicating claims from 110 papers in leading economic and political science journals. The analysis involves computational reproducibility checks and robustness assessments. It reveals several patterns. First, we uncover a high rate of fully computationally reproducible results (over 85\%). Second, excluding minor issues like missing packages or broken pathways, we uncover coding errors for about 25\% of studies, with some studies containing multiple errors. Third, we test the robustness of the results to 5,511 re-analyses. We find a robustness reproducibility of about 70\%. Robustness reproducibility rates are relatively higher for re-analyses that introduce new data and lower for re-analyses that change the sample or the definition of the dependent variable. Fourth, 52\% of re-analysis effect size estimates are smaller than the original published estimates and the average statistical significance of a re-analysis is 77\% of the original. Lastly, we rely on six teams of researchers working independently to answer eight additional research questions on the determinants of robustness reproducibility. Most teams find a negative relationship between replicators' experience and reproducibility, while finding no relationship between reproducibility and the provision of intermediate or even raw data combined with the necessary cleaning codes.}, language = {en} } @article{BarschkettHuebenerLeibingetal.2023, author = {Barschkett, Mara and Huebener, Mathias and Leibing, Andreas and Marcus, Jan and Margaryan, Shushanik}, title = {The long-term effects of measles vaccination on earnings and employment}, series = {Journal of comments and replications in economics}, volume = {2}, journal = {Journal of comments and replications in economics}, number = {4}, publisher = {ZBW - Leibniz Information Centre for Economics}, address = {Hamburg}, issn = {2749-988X}, doi = {10.18718/81781.30}, pages = {15}, year = {2023}, abstract = {Atwood analyzes the effects of the 1963 U.S. measles vaccination on long-run labor market outcomes, using a generalized difference-in-differences approach. We reproduce the results of this paper and perform a battery of robustness checks. Overall, we confirm that the measles vaccination had positive labor market effects. While the negative effect on the likelihood of living in poverty and the positive effect on the probability of being employed are very robust across the different specifications, the headline estimate—the effect on earnings—is more sensitive to the exclusion of certain regions and survey years.}, language = {en} }