@phdthesis{Mueller2022, author = {M{\"u}ller, Daniela}, title = {Abrupt climate changes and extreme events in two different varved lake sediment records}, doi = {10.25932/publishup-55833}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-558331}, school = {Universit{\"a}t Potsdam}, pages = {XVIII, 209}, year = {2022}, abstract = {Different lake systems might reflect different climate elements of climate changes, while the responses of lake systems are also divers, and are not completely understood so far. Therefore, a comparison of lakes in different climate zones, during the high-amplitude and abrupt climate fluctuations of the Last Glacial to Holocene transition provides an exceptional opportunity to investigate distinct natural lake system responses to different abrupt climate changes. The aim of this doctoral thesis was to reconstruct climatic and environmental fluctuations down to (sub-) annual resolution from two different lake systems during the Last Glacial-Interglacial transition (~17 and 11 ka). Lake Gościąż, situated in the temperate central Poland, developed in the Aller{\o}d after recession of the Last Glacial ice sheets. The Dead Sea is located in the Levant (eastern Mediterranean) within a steep gradient from sub-humid to hyper-arid climate, and formed in the mid-Miocene. Despite their differences in sedimentation processes, both lakes form annual laminations (varves), which are crucial for studies of abrupt climate fluctuations. This doctoral thesis was carried out within the DFG project PALEX-II (Paleohydrology and Extreme Floods from the Dead Sea ICDP Core) that investigates extreme hydro-meteorological events in the ICDP core in relation to climate changes, and ICLEA (Virtual Institute of Integrated Climate and Landscape Evolution Analyses) that intends to better the understanding of climate dynamics and landscape evolutions in north-central Europe since the Last Glacial. Further, it contributes to the Helmholtz Climate Initiative REKLIM (Regional Climate Change and Humans) Research Theme 3 "Extreme events across temporal and spatial scales" that investigates extreme events using climate data, paleo-records and model-based simulations. The three main aims were to (1) establish robust chronologies of the lakes, (2) investigate how major and abrupt climate changes affect the lake systems, and (3) to compare the responses of the two varved lakes to these hemispheric-scale climate changes. Robust chronologies are a prerequisite for high-resolved climate and environmental reconstructions, as well as for archive comparisons. Thus, addressing the first aim, the novel chronology of Lake Gościąż was established by microscopic varve counting and Bayesian age-depth modelling in Bacon for a non-varved section, and was corroborated by independent age constrains from 137Cs activity concentration measurements, AMS radiocarbon dating and pollen analysis. The varve chronology reaches from the late Aller{\o}d until AD 2015, revealing more Holocene varves than a previous study of Lake Gościąż suggested. Varve formation throughout the complete Younger Dryas (YD) even allowed the identification of annually- to decadal-resolved leads and lags in proxy responses at the YD transitions. The lateglacial chronology of the Dead Sea (DS) was thus far mainly based on radiocarbon and U/Th-dating. In the unique ICDP core from the deep lake centre, continuous search for cryptotephra has been carried out in lateglacial sediments between two prominent gypsum deposits - the Upper and Additional Gypsum Units (UGU and AGU, respectively). Two cryptotephras were identified with glass analyses that correlate with tephra deposits from the S{\"u}phan and Nemrut volcanoes indicating that the AGU is ~1000 years younger than previously assumed, shifting it into the YD, and the underlying varved interval into the B{\o}lling/Aller{\o}d, contradicting previous assumptions. Using microfacies analyses, stable isotopes and temperature reconstructions, the second aim was achieved at Lake Gościąż. The YD lake system was dynamic, characterized by higher aquatic bioproductivity, more re-suspended material and less anoxia than during the Aller{\o}d and Early Holocene, mainly influenced by stronger water circulation and catchment erosion due to stronger westerly winds and less lake sheltering. Cooling at the YD onset was ~100 years longer than the final warming, while environmental proxies lagged the onset of cooling by ~90 years, but occurred contemporaneously during the termination of the YD. Chironomid-based temperature reconstructions support recent studies indicating mild YD summer temperatures. Such a comparison of annually-resolved proxy responses to both abrupt YD transitions is rare, because most European lake archives do not preserve varves during the YD. To accomplish the second aim at the DS, microfacies analyses were performed between the UGU (~17 ka) and Holocene onset (~11 ka) in shallow- (Masada) and deep-water (ICDP core) environments. This time interval is marked by a huge but fluctuating lake level drop and therefore the complete transition into the Holocene is only recorded in the deep-basin ICDP core. In this thesis, this transition was investigated for the first time continuously and in detail. The final two pronounced lake level drops recorded by deposition of the UGU and AGU, were interrupted by one millennium of relative depositional stability and a positive water budget as recorded by aragonite varve deposition interrupted by only a few event layers. Further, intercalation of aragonite varves between the gypsum beds of the UGU and AGU shows that these generally dry intervals were also marked by decadal- to centennial-long rises in lake level. While continuous aragonite varves indicate decadal-long stable phases, the occurrence of thicker and more frequent event layers suggests general more instability during the gypsum units. These results suggest a pattern of complex and variable hydroclimate at different time scales during the Lateglacial at the DS. The third aim was accomplished based on the individual studies above that jointly provide an integrated picture of different lake responses to different climate elements of hemispheric-scale abrupt climate changes during the Last Glacial-Interglacial transition. In general, climatically-driven facies changes are more dramatic in the DS than at Lake Gościąż. Further, Lake Gościąż is characterized by continuous varve formation nearly throughout the complete profile, whereas the DS record is widely characterized by extreme event layers, hampering the establishment of a continuous varve chronology. The lateglacial sedimentation in Lake Gościąż is mainly influenced by westerly winds and minor by changes in catchment vegetation, whereas the DS is primarily influenced by changes in winter precipitation, which are caused by temperature variations in the Mediterranean. Interestingly, sedimentation in both archives is more stable during the B{\o}lling/Aller{\o}d and more dynamic during the YD, even when sedimentation processes are different. In summary, this doctoral thesis presents seasonally-resolved records from two lake archives during the Lateglacial (ca 17-11 ka) to investigate the impact of abrupt climate changes in different lake systems. New age constrains from the identification of volcanic glass shards in the lateglacial sediments of the DS allowed the first lithology-based interpretation of the YD in the DS record and its comparison to Lake Gościąż. This highlights the importance of the construction of a robust chronology, and provides a first step for synchronization of the DS with other eastern Mediterranean archives. Further, climate reconstructions from the lake sediments showed variability on different time scales in the different archives, i.e. decadal- to millennial fluctuations in the lateglacial DS, and even annual variations and sub-decadal leads and lags in proxy responses during the rapid YD transitions in Lake Gościąż. This showed the importance of a comparison of different lake archives to better understand the regional and local impacts of hemispheric-scale climate variability. An unprecedented example is demonstrated here of how different lake systems show different lake responses and also react to different climate elements of abrupt climate changes. This further highlights the importance of the understanding of the respective lake system for climate reconstructions.}, language = {en} } @article{ObrehtWoermerBraueretal.2020, author = {Obreht, Igor and W{\"o}rmer, Lars and Brauer, Achim and Wendt, Jenny and Alfken, Susanne and De Vleeschouwer, David and Elvert, Marcus and Hinrichs, Kai-Uwe}, title = {An annually resolved record of Western European vegetation response to Younger Dryas cooling}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {231}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Amsterdam [u.a.]}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2020.106198}, pages = {15}, year = {2020}, abstract = {The regional patterns and timing of the Younger Dryas cooling in the North Atlantic realm were complex and are mechanistically incompletely understood. To enhance understanding of regional climate patterns, we present molecular biomarker records at subannual to annual resolution by mass spectrometry imaging (MSI) of sediments from the Lake Meerfelder Maar covering the Allerod-Younger Dryas transition. These analyses are supported by conventional extraction-based molecular-isotopic analyses, which both validate the imaging results and constrain the sources of the target compounds. The targeted fatty acid biomarkers serve as a gauge of the response of the local aquatic and terrestrial ecosystem to climate change. Based on the comparison of our data with existing data from Meerfelder Maar, we analyse the short-term environmental evolution in Western Europe during the studied time interval and confirm the previously reported delayed hydrological response to Greenland cooling. However, despite a detected delay of Western European environmental change of similar to 135 years, our biomarker data show statistically significant correlation with deuterium excess in Greenland ice core at - annual resolution during this time-transgressive cooling. This suggests a coherent atmospheric forcing across the North Atlantic realm during this transition. We propose that Western European cooling was postponed due to major reorganization of the westerlies that were intermittently forcing warmer and wetter air masses from lower latitudes to Western Europe and thus resulted in delayed cooling relative to Greenland.}, language = {en} } @phdthesis{Brugger2021, author = {Brugger, Julia}, title = {Modeling changes in climate during past mass extinctions}, doi = {10.25932/publishup-53246}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-532468}, school = {Universit{\"a}t Potsdam}, pages = {V, 217}, year = {2021}, abstract = {The evolution of life on Earth has been driven by disturbances of different types and magnitudes over the 4.6 million years of Earth's history (Raup, 1994, Alroy, 2008). One example for such disturbances are mass extinctions which are characterized by an exceptional increase in the extinction rate affecting a great number of taxa in a short interval of geologic time (Sepkoski, 1986). During the 541 million years of the Phanerozoic, life on Earth suffered five exceptionally severe mass extinctions named the "Big Five Extinctions". Many mass extinctions are linked to changes in climate (Feulner, 2009). Hence, the study of past mass extinctions is not only intriguing, but can also provide insights into the complex nature of the Earth system. This thesis aims at deepening our understanding of the triggers of mass extinctions and how they affected life. To accomplish this, I investigate changes in climate during two of the Big Five extinctions using a coupled climate model. During the Devonian (419.2-358.9 million years ago) the first vascular plants and vertebrates evolved on land while extinction events occurred in the ocean (Algeo et al., 1995). The causes of these formative changes, their interactions and their links to changes in climate are still poorly understood. Therefore, we explore the sensitivity of the Devonian climate to various boundary conditions using an intermediate-complexity climate model (Brugger et al., 2019). In contrast to Le Hir et al. (2011), we find only a minor biogeophysical effect of changes in vegetation cover due to unrealistically high soil albedo values used in the earlier study. In addition, our results cannot support the strong influence of orbital parameters on the Devonian climate, as simulated with a climate model with a strongly simplified ocean model (De Vleeschouwer et al., 2013, 2014, 2017). We can only reproduce the changes in Devonian climate suggested by proxy data by decreasing atmospheric CO2. Still, finding agreement between the evolution of sea surface temperatures reconstructed from proxy data (Joachimski et al., 2009) and our simulations remains challenging and suggests a lower δ18O ratio of Devonian seawater. Furthermore, our study of the sensitivity of the Devonian climate reveals a prevailing mode of climate variability on a timescale of decades to centuries. The quasi-periodic ocean temperature fluctuations are linked to a physical mechanism of changing sea-ice cover, ocean convection and overturning in high northern latitudes. In the second study of this thesis (Dahl et al., under review) a new reconstruction of atmospheric CO2 for the Devonian, which is based on CO2-sensitive carbon isotope fractionation in the earliest vascular plant fossils, suggests a much earlier drop of atmo- spheric CO2 concentration than previously reconstructed, followed by nearly constant CO2 concentrations during the Middle and Late Devonian. Our simulations for the Early Devonian with identical boundary conditions as in our Devonian sensitivity study (Brugger et al., 2019), but with a low atmospheric CO2 concentration of 500 ppm, show no direct conflict with available proxy and paleobotanical data and confirm that under the simulated climatic conditions carbon isotope fractionation represents a robust proxy for atmospheric CO2. To explain the earlier CO2 drop we suggest that early forms of vascular land plants have already strongly influenced weathering. This new perspective on the Devonian questions previous ideas about the climatic conditions and earlier explanations for the Devonian mass extinctions. The second mass extinction investigated in this thesis is the end-Cretaceous mass extinction (66 million years ago) which differs from the Devonian mass extinctions in terms of the processes involved and the timescale on which the extinctions occurred. In the two studies presented here (Brugger et al., 2017, 2021), we model the climatic effects of the Chicxulub impact, one of the proposed causes of the end-Cretaceous extinction, for the first millennium after the impact. The light-dimming effect of stratospheric sulfate aerosols causes severe cooling, with a decrease of global annual mean surface air temperature of at least 26◦C and a recovery to pre-impact temperatures after more than 30 years. The sudden surface cooling of the ocean induces deep convection which brings nutrients from the deep ocean via upwelling to the surface ocean. Using an ocean biogeochemistry model we explore the combined effect of ocean mixing and iron-rich dust originating from the impactor on the marine biosphere. As soon as light levels have recovered, we find a short, but prominent peak in marine net primary productivity. This newly discovered mechanism could result in toxic effects for marine near-surface ecosystems. Comparison of our model results to proxy data (Vellekoop et al., 2014, 2016, Hull et al., 2020) suggests that carbon release from the terrestrial biosphere is required in addition to the carbon dioxide which can be attributed to the target material. Surface ocean acidification caused by the addition of carbon dioxide and sulfur is only moderate. Taken together, the results indicate a significant contribution of the Chicxulub impact to the end-Cretaceous mass extinction by triggering multiple stressors for the Earth system. Although the sixth extinction we face today is characterized by human intervention in nature, this thesis shows that we can gain many insights into future extinctions from studying past mass extinctions, such as the importance of the rate of change (Rothman, 2017), the interplay of multiple stressors (Gunderson et al., 2016), and changes in the carbon cycle (Rothman, 2017, Tierney et al., 2020).}, language = {en} } @phdthesis{Zamagni2009, author = {Zamagni, Jessica}, title = {Responses of a shallow-water ecosystem to the early Paleogene greenhouse environmental conditions : evolution of Larger Foraminifera and coral communities from the Northern Tethys}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-31853}, school = {Universit{\"a}t Potsdam}, year = {2009}, abstract = {Modern anthropogenic forcing of atmospheric chemistry poses the question of how the Earth System will respond as thousands of gigatons of greenhouse gas are rapidly added to the atmosphere. A similar, albeit nonanthropogenic, situation occurred during the early Paleogene, when catastrophic release of carbon to the atmosphere triggered abrupt increase in global temperatures. The best documented of these events is the Paleocene-Eocene Thermal Maximum (PETM, ~55 Ma) when the magnitude of carbon addition to the oceans and atmosphere was similar to those expected for the future. This event initiated global warming, changes in hydrological cycles, biotic extinction and migrations. A recently proposed hypothesis concerning changes in marine ecosystems suggests that this global warming strongly influenced the shallow-water biosphere, triggering extinctions and turnover in the Larger Foraminifera (LF) community and the demise of corals. The successions from the Adriatic Carbonate Platform (SW Slovenia) represent an ideal location to test the hypothesis of a possible causal link between the PETM and evolution of shallow-water organisms because they record continuous sedimentation from the Late Paleocene to the Early Eocene and are characterized by a rich biota, especially LF, fundamental for detailed biostratigraphic studies. In order to reconstruct paleoenvironmental conditions during deposition, I focused on sedimentological analysis and paleoecological study of benthic assemblages. During the Late Paleocene-earliest Eocene, sedimentation occurred on a shallow-water carbonate ramp system characterized by enhanced nutrient levels. LF represent the common constituent of the benthic assemblages that thrived in this setting throughout the Late Paleocene to the Early Eocene. With detailed biostratigraphic and chemostratigraphic analyses documenting the most complete record to date available for the PETM event in a shallow-water marine environment, I correlated chemostratigraphically for the first time the evolution of LF with the δ¹³C curves. This correlation demonstrated that no major turnover in the LF communities occurred synchronous with the PETM; thus the evolution of LF was mainly controlled by endogenous biotic forces. The study of Late Thanetian metric-sized microbialite-coral mounds which developed in the middle part of the ramp, documented the first Cenozoic occurrence of microbially-cemented mounds. The development of these mounds, with temporary dominance of microbial communities over corals, suggest environmentally-triggered "phase shifts" related to frequent fluctuations of nutrient/turbidity levels during recurrent wet phases which preceding the extreme greenhouse conditions of the PETM. The paleoecological study of the coral community in the microbialites-coral mounds, the study of corals from Early Eocene platform from SW France, and a critical, extensive literature research of Late Paleocene - Early Eocene coral occurrences from the Tethys, the Atlantic, the Caribbean realms suggested that these corals types, even if not forming extensive reefs, are common in the biofacies as small isolated colonies, piles of rubble or small patch-reefs. These corals might have developed 'alternative' life strategies to cope with harsh conditions (high/fluctuating nutrients/turbidity, extreme temperatures, perturbation of aragonite saturation state) during the greenhouse times of the early Paleogene, representing a good fossil analogue to modern corals thriving close to their thresholds for survival. These results demonstrate the complexity of the biological responses to extreme conditions, not only in terms of temperature but also nutrient supply, physical disturbance and their temporal variability and oscillating character.}, language = {en} }