@misc{RandallJuengelRimannetal.2018, author = {Randall, Matthew J. and J{\"u}ngel, Astrid and Rimann, Markus and Wuertz-Kozak, Karin}, title = {Advances in the biofabrication of 3D skin in vitro}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {680}, issn = {1866-8364}, doi = {10.25932/publishup-46884}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-468844}, pages = {14}, year = {2018}, abstract = {The relevance for in vitro three-dimensional (3D) tissue culture of skin has been present for almost a century. From using skin biopsies in organ culture, to vascularized organotypic full-thickness reconstructed human skin equivalents, in vitro tissue regeneration of 3D skin has reached a golden era. However, the reconstruction of 3D skin still has room to grow and develop. The need for reproducible methodology, physiological structures and tissue architecture, and perfusable vasculature are only recently becoming a reality, though the addition of more complex structures such as glands and tactile corpuscles require advanced technologies. In this review, we will discuss the current methodology for biofabrication of 3D skin models and highlight the advantages and disadvantages of the existing systems as well as emphasize how new techniques can aid in the production of a truly physiologically relevant skin construct for preclinical innovation.}, language = {en} } @misc{OlmerEngelsUsmanetal.2018, author = {Olmer, Ruth and Engels, Lena and Usman, Abdulai and Menke, Sandra and Malik, Muhammad Nasir Hayat and Pessler, Frank and G{\"o}hring, Gudrun and Bornhorst, Dorothee and Bolten, Svenja and Abdelilah-Seyfried, Salim and Scheper, Thomas and Kempf, Henning and Zweigerdt, Robert and Martin, Ulrich}, title = {Differentiation of Human Pluripotent Stem Cells into Functional Endothelial Cells in Scalable Suspension Culture}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {5}, issn = {1866-8372}, doi = {10.25932/publishup-42709}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-427095}, pages = {18}, year = {2018}, abstract = {Endothelial cells (ECs) are involved in a variety of cellular responses. As multifunctional components of vascular structures, endothelial (progenitor) cells have been utilized in cellular therapies and are required as an important cellular component of engineered tissue constructs and in vitro disease models. Although primary ECs from different sources are readily isolated and expanded, cell quantity and quality in terms of functionality and karyotype stability is limited. ECs derived from human induced pluripotent stem cells (hiPSCs) represent an alternative and potentially superior cell source, but traditional culture approaches and 2D differentiation protocols hardly allow for production of large cell numbers. Aiming at the production of ECs, we have developed a robust approach for efficient endothelial differentiation of hiPSCs in scalable suspension culture. The established protocol results in relevant numbers of ECs for regenerative approaches and industrial applications that show in vitro proliferation capacity and a high degree of chromosomal stability.}, language = {en} } @article{OlmerEngelsUsmanetal.2018, author = {Olmer, Ruth and Engels, Lena and Usman, Abdulai and Menke, Sandra and Malik, Muhammad Nasir Hayat and Pessler, Frank and Goehring, Gudrun and Bornhorst, Dorothee and Bolten, Svenja and Abdelilah-Seyfried, Salim and Scheper, Thomas and Kempf, Henning and Zweigerdt, Robert and Martin, Ulrich}, title = {Differentiation of Human Pluripotent Stem Cells into Functional Endothelial Cells in Scalable Suspension Culture}, series = {Stem Cell Reports}, volume = {10}, journal = {Stem Cell Reports}, number = {5}, publisher = {Springer}, address = {New York}, issn = {2213-6711}, doi = {10.1016/j.stemcr.2018.03.017}, pages = {16}, year = {2018}, abstract = {Endothelial cells (ECs) are involved in a variety of cellular responses. As multifunctional components of vascular structures, endothelial (progenitor) cells have been utilized in cellular therapies and are required as an important cellular component of engineered tissue constructs and in vitro disease models. Although primary ECs from different sources are readily isolated and expanded, cell quantity and quality in terms of functionality and karyotype stability is limited. ECs derived from human induced pluripotent stem cells (hiPSCs) represent an alternative and potentially superior cell source, but traditional culture approaches and 2D differentiation protocols hardly allow for production of large cell numbers. Aiming at the production of ECs, we have developed a robust approach for efficient endothelial differentiation of hiPSCs in scalable suspension culture. The established protocol results in relevant numbers of ECs for regenerative approaches and industrial applications that show in vitro proliferation capacity and a high degree of chromosomal stability.}, language = {en} } @misc{BrauneLatourReinthaleretal.2019, author = {Braune, Steffen and Latour, Robert A. and Reinthaler, Markus and Landmesser, Ulf and Lendlein, Andreas and Jung, Friedrich}, title = {In Vitro Thrombogenicity Testing of Biomaterials}, series = {Advanced healthcare materials}, volume = {8}, journal = {Advanced healthcare materials}, number = {21}, publisher = {Wiley}, address = {Hoboken}, issn = {2192-2640}, doi = {10.1002/adhm.201900527}, pages = {17}, year = {2019}, abstract = {The short- and long-term thrombogenicity of implant materials is still unpredictable, which is a significant challenge for the treatment of cardiovascular diseases. A knowledge-based approach for implementing biofunctions in materials requires a detailed understanding of the medical device in the biological system. In particular, the interplay between material and blood components/cells as well as standardized and commonly acknowledged in vitro test methods allowing a reproducible categorization of the material thrombogenicity requires further attention. Here, the status of in vitro thrombogenicity testing methods for biomaterials is reviewed, particularly taking in view the preparation of test materials and references, the selection and characterization of donors and blood samples, the prerequisites for reproducible approaches and applied test systems. Recent joint approaches in finding common standards for a reproducible testing are summarized and perspectives for a more disease oriented in vitro thrombogenicity testing are discussed.}, language = {en} }