@article{ArvidssonPerezRodriguezMuellerRoeber2011, author = {Arvidsson, Samuel Janne and Perez-Rodriguez, Paulino and M{\"u}ller-R{\"o}ber, Bernd}, title = {A growth phenotyping pipeline for Arabidopsis thaliana integrating image analysis and rosette area modeling for robust quantification of genotype effects}, series = {New phytologist : international journal of plant science}, volume = {191}, journal = {New phytologist : international journal of plant science}, number = {3}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {0028-646X}, doi = {10.1111/j.1469-8137.2011.03756.x}, pages = {895 -- 907}, year = {2011}, abstract = {To gain a deeper understanding of the mechanisms behind biomass accumulation, it is important to study plant growth behavior. Manually phenotyping large sets of plants requires important human resources and expertise and is typically not feasible for detection of weak growth phenotypes. Here, we established an automated growth phenotyping pipeline for Arabidopsis thaliana to aid researchers in comparing growth behaviors of different genotypes. The analysis pipeline includes automated image analysis of two-dimensional digital plant images and evaluation of manually annotated information of growth stages. It employs linear mixed-effects models to quantify genotype effects on total rosette area and relative leaf growth rate (RLGR) and ANOVAs to quantify effects on developmental times. Using the system, a single researcher can phenotype up to 7000 plants d(-1). Technical variance is very low (typically < 2\%). We show quantitative results for the growth-impaired starch-excessmutant sex4-3 and the growth-enhancedmutant grf9. We show that recordings of environmental and developmental variables reduce noise levels in the phenotyping datasets significantly and that careful examination of predictor variables (such as d after sowing or germination) is crucial to avoid exaggerations of recorded phenotypes and thus biased conclusions.}, language = {en} } @article{OlasFichtnerApelt2020, author = {Olas, Justyna Jadwiga and Fichtner, Franziska and Apelt, Federico}, title = {All roads lead to growth}, series = {Journal of experimental botany}, volume = {71}, journal = {Journal of experimental botany}, number = {1}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0022-0957}, doi = {10.1093/jxb/erz406}, pages = {11 -- 21}, year = {2020}, abstract = {Plant growth is a highly complex biological process that involves innumerable interconnected biochemical and signalling pathways. Many different techniques have been developed to measure growth, unravel the various processes that contribute to plant growth, and understand how a complex interaction between genotype and environment determines the growth phenotype. Despite this complexity, the term 'growth' is often simplified by researchers; depending on the method used for quantification, growth is viewed as an increase in plant or organ size, a change in cell architecture, or an increase in structural biomass. In this review, we summarise the cellular and molecular mechanisms underlying plant growth, highlight state-of-the-art imaging and non-imaging-based techniques to quantitatively measure growth, including a discussion of their advantages and drawbacks, and suggest a terminology for growth rates depending on the type of technique used.}, language = {en} } @misc{Lenhard2012, author = {Lenhard, Michael}, title = {All's well that ends well}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {906}, issn = {1866-8372}, doi = {10.25932/publishup-43803}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-438035}, pages = {9 -- 11}, year = {2012}, abstract = {The transition from cell proliferation to cell expansion is critical for determining leaf size. Andriankaja et al. (2012) demonstrate that in leaves of dicotyledonous plants, a basal proliferation zone is maintained for several days before abruptly disappearing, and that chloroplast differentiation is required to trigger the onset of cell expansion.}, language = {en} } @article{ShahnejatBushehriAlluMehterovetal.2017, author = {Shahnejat-Bushehri, Sara and Allu, Annapurna Devi and Mehterov, Nikolay and Thirumalaikumar, Venkatesh P. and Alseekh, Saleh and Fernie, Alisdair R. and Mueller-Roeber, Bernd and Balazadeh, Salma}, title = {Arabidopsis NAC Transcription Factor JUNGBRUNNEN1 Exerts Conserved Control Over Gibberellin and Brassinosteroid Metabolism and Signaling Genes in Tomato}, series = {Frontiers in plant science}, volume = {8}, journal = {Frontiers in plant science}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-462X}, doi = {10.3389/fpls.2017.00214}, pages = {13}, year = {2017}, abstract = {The Arabidopsis thaliana NAC transcription factor JUNGBRUNNEN1 (AtJUB1) regulates growth by directly repressing GA3ox1 and DWF4, two key genes involved in gibberellin (GA) and brassinosteroid (BR) biosynthesis, respectively, leading to GA and BR deficiency phenotypes. AtJUB1 also reduces the expression of PIF4, a bHLH transcription factor that positively controls cell elongation, while it stimulates the expression of DELLA genes, which are important repressors of growth. Here, we extend our previous findings by demonstrating that AtJUB1 induces similar GA and BR deficiency phenotypes and changes in gene expression when overexpressed in tomato (Solanum lycopersicum). Importantly, and in accordance with the growth phenotypes observed, AtJUB1 inhibits the expression of growth-supporting genes, namely the tomato orthologs of GA3ox1, DWF4 and PIF4, but activates the expression of DELLA orthologs, by directly binding to their promoters. Overexpression of AtJUB1 in tomato delays fruit ripening, which is accompanied by reduced expression of several ripeningrelated genes, and leads to an increase in the levels of various amino acids (mostly proline, beta-alanine, and phenylalanine), gamma-aminobutyric acid (GABA), and major organic acids including glutamic acid and aspartic acid. The fact that AtJUB1 exerts an inhibitory effect on the GA/BR biosynthesis and PIF4 genes but acts as a direct activator of DELLA genes in both, Arabidopsis and tomato, strongly supports the model that the molecular constituents of the JUNGBRUNNEN1 growth control module are considerably conserved across species.}, language = {en} } @misc{Flassbeck2005, author = {Flassbeck, Heiner}, title = {Arbeitspl{\"a}tze durch Wachstum : anders geht es nicht}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-9756}, year = {2005}, abstract = {The author argues that growth determines employment and not the other way around. He opposes the widespread view among German economists that more employment generated by wage cuts or increased labour market flexibility will stimulate growth. For him, this view relies on theoretical prejudices that have to be rejected in light of some recent, simple evidence. The fact that all cyclical rebounds during the 1990s have been cut short by restrictive monetary policy explains the inability of the German labour market to regain full employment.}, language = {de} } @misc{ZemellaThoringHoffmeisteretal.2018, author = {Zemella, Anne and Thoring, Lena and Hoffmeister, Christian and Šamal{\´i}kov{\´a}, M{\´a}ria and Ehren, Patricia and W{\"u}stenhagen, Doreen Anja and Kubick, Stefan}, title = {Cell-free protein synthesis as a novel tool for directed glycoengineering of active erythropoietin}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {824}, doi = {10.25932/publishup-42701}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-427017}, pages = {14}, year = {2018}, abstract = {As one of the most complex post-translational modification, glycosylation is widely involved in cell adhesion, cell proliferation and immune response. Nevertheless glycoproteins with an identical polypeptide backbone mostly differ in their glycosylation patterns. Due to this heterogeneity, the mapping of different glycosylation patterns to their associated function is nearly impossible. In the last years, glycoengineering tools including cell line engineering, chemoenzymatic remodeling and site-specific glycosylation have attracted increasing interest. The therapeutic hormone erythropoietin (EPO) has been investigated in particular by various groups to establish a production process resulting in a defined glycosylation pattern. However commercially available recombinant human EPO shows batch-to-batch variations in its glycoforms. Therefore we present an alternative method for the synthesis of active glycosylated EPO with an engineered O-glycosylation site by combining eukaryotic cell-free protein synthesis and site-directed incorporation of non-canonical amino acids with subsequent chemoselective modifications.}, language = {en} } @article{LissoSchroederMuessig2013, author = {Lisso, Janina and Schr{\"o}der, Florian and M{\"u}ssig, Carsten}, title = {EXO modifies sucrose and trehalose responses and connects the extracellular carbon status to growth}, series = {Frontiers in plant science}, volume = {4}, journal = {Frontiers in plant science}, number = {25}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-462X}, doi = {10.3389/fpls.2013.00219}, pages = {18}, year = {2013}, abstract = {Plants have the capacity to adapt growth to changing environmental conditions. This implies the modulation of metabolism according to the availability of carbon (C). Particular interest in the response to the C availability is based on the increasing atmospheric levels of CO2. Several regulatory pathways that link the C status to growth have emerged. The extracellular EXO protein is essential for cell expansion and promotes shoot and root growth. Homologous proteins were identified in evolutionarily distant green plants. We show here that the EXO protein connects growth with C responses. The exo mutant displayed altered responses to exogenous sucrose supplemented to the growth medium. Impaired growth of the mutant in synthetic medium was associated with the accumulation of starch and anthocyanins, altered expression of sugar-responsive genes, and increased abscisic acid levels. Thus, EXO modulates several responses related to the C availability. Growth retardation on medium supplemented with 2-deoxy-glucose, mannose, and palatinose was similar to the wildtype. Trehalose feeding stimulated root growth and shoot biomass production of exoplants where as it inhibited growth of the wildtype. The phenotypic features of the exo mutant suggest that apoplastic processes coordinate growth and C responses.}, language = {en} } @article{BemervanMourikMuinoetal.2017, author = {Bemer, Marian and van Mourik, Hilda and Muino, Jose M. and Ferrandiz, Cristina and Kaufmann, Kerstin and Angenent, Gerco C.}, title = {FRUITFULL controls SAUR10 expression and regulates Arabidopsis growth and architecture}, series = {Journal of experimental botany}, volume = {68}, journal = {Journal of experimental botany}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0022-0957}, doi = {10.1093/jxb/erx184}, pages = {3391 -- 3403}, year = {2017}, abstract = {MADS-domain transcription factors are well known for their roles in plant development and regulate sets of downstream genes that have been uncovered by high-throughput analyses. A considerable number of these targets are predicted to function in hormone responses or responses to environmental stimuli, suggesting that there is a close link between developmental and environmental regulators of plant growth and development. Here, we show that the Arabidopsis MADS-domain factor FRUITFULL (FUL) executes several functions in addition to its noted role in fruit development. Among the direct targets of FUL, we identified SMALL AUXIN UPREGULATED RNA 10 (SAUR10), a growth regulator that is highly induced by a combination of auxin and brassinosteroids and in response to reduced R:FR light. Interestingly, we discovered that SAUR10 is repressed by FUL in stems and inflorescence branches. SAUR10 is specifically expressed at the abaxial side of these branches and this localized activity is influenced by hormones, light conditions and by FUL, which has an effect on branch angle. Furthermore, we identified a number of other genes involved in hormone pathways and light signalling as direct targets of FUL in the stem, demonstrating a connection between developmentally and environmentally regulated growth programs.}, language = {en} } @misc{HermanussenSchefflerGrothetal.2015, author = {Hermanussen, Michael and Scheffler, Christiane and Groth, Detlef and Aßmann, Christian}, title = {Height and skeletal morphology in relation to modern life style}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {869}, issn = {1866-8372}, doi = {10.25932/publishup-43481}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-434814}, pages = {7}, year = {2015}, abstract = {Height and skeletal morphology strongly relate to life style. Parallel to the decrease in physical activity and locomotion, modern people are slimmer in skeletal proportions. In German children and adolescents, elbow breadth and particularly relative pelvic breadth (50th centile of bicristal distance divided by body height) have significantly decreased in recent years. Even more evident than the changes in pelvic morphology are the rapid changes in body height in most modern countries since the end-19th and particularly since the mid-20th century. Modern Japanese mature earlier; the age at take-off (ATO, the age at which the adolescent growth spurt starts) decreases, and they are taller at all ages. Preece-Baines modelling of six national samples of Japanese children and adolescents, surveyed between 1955 and 2000, shows that this gain in height is largely an adolescent trend, whereas height at take-off (HTO) increased by less than 3 cm since 1955; adolescent growth (height gain between ATO and adult age) increased by 6 cm. The effect of globalization on the modern post-war Japanese society ("community effect in height") on adolescent growth is discussed.}, language = {en} } @article{PetrovSchippersBeninaetal.2013, author = {Petrov, Veselin and Schippers, Jos and Benina, Maria and Minkov, Ivan and M{\"u}ller-R{\"o}ber, Bernd and Gechev, Tsanko S.}, title = {In search for new players of the oxidative stress network by phenotyping an Arabidopsis T-DNA mutant collection on reactive oxygen species-eliciting chemicals}, series = {Plant omics}, volume = {6}, journal = {Plant omics}, number = {1}, publisher = {Southern Cross Publ.}, address = {Lismore}, issn = {1836-0661}, pages = {46 -- 54}, year = {2013}, abstract = {The ability of some chemical compounds to cause oxidative stress offers a fast and convenient way to study the responses of plants to reactive oxygen species (ROS). In order to unveil potential novel genetic players of the ROS-regulatory network, a population of similar to 2,000 randomly selected Arabidopsis thaliana T-DNA insertion mutants was screened for ROS sensitivity/resistance by growing seedlings on agar medium supplemented with stress-inducing concentrations of the superoxide-eliciting herbicide methyl viologen or the catalase inhibitor 3-amino-triazole. A semi-robotic setup was used to capture and analyze images of the chemically treated seedlings which helped interpret the screening results by providing quantitative information on seedling area and healthy-to-chlorotic tissue ratios for data verification. A ROS-related phenotype was confirmed in three of the initially selected 33 mutant candidates, which carry T-DNA insertions in genes encoding a Ring/Ubox superfamily protein, ABI5 binding protein 1 (AFP1), previously reported to be involved in ABA signaling, and a protein of unknown function, respectively. In addition, we identified six mutants, most of which have not been described yet, that are related to growth or chloroplast development and show defects in a ROS-independent manner. Thus, semi-automated image capturing and phenotyping applied on publically available T-DNA insertion collections adds a simple means for discovering novel mutants in complex physiological processes and identifying the genes involved.}, language = {en} }