@phdthesis{CalderonQuinonez2023, author = {Calder{\´o}n Qui{\~n}{\´o}nez, Ana Patricia}, title = {Ecology and conservation of the jaguar (Panthera onca) in Central America}, doi = {10.25932/publishup-61367}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-613671}, school = {Universit{\"a}t Potsdam}, pages = {140}, year = {2023}, abstract = {Conservation of the jaguar relies on holistic and transdisciplinary conservation strategies that integratively safeguard essential, connected habitats, sustain viable populations and their genetic exchange, and foster peaceful human-jaguar coexistence. These strategies define four research priorities to advance jaguar conservation throughout the species' range. In this thesis I provide several relevant ecological and sociological insights into these research priorities, each addressed in a separate chapter. I focus on the effects of anthropogenic landscapes on jaguar habitat use and population gene flow, spatial patterns of jaguar habitat suitability and functional population connectivity, and on innovative governance approaches which can work synergistically to help achieve human-wildlife conviviality. Furthermore, I translate these insights into recommendations for conservation practice by providing tools and suggestions that conservation managers and stakeholders can use to implement local actions but also make broad scale conservation decisions in Central America. In Chapter 2, I model regional habitat use of jaguars, producing spatially-explicit maps for management of key areas of habitat suitability. Using an occupancy model of 13-year-camera-trap occurrence data, I show that human influence has the strongest impact on jaguar habitat use, and that Jaguar Conservation Units are the most important reservoirs of high quality habitat in this region. I build upon these results by zooming in to an area of high habitat suitability loss in Chapter 3, northern Central America. Here I study the drivers of jaguar gene flow and I produce spatially-explicit maps for management of key areas of functional population connectivity in this region. I use microsatellite data and pseudo-optimized multiscale, multivariate resistance surfaces of gene flow to show that jaguar gene flow is influenced by environmental, and even more strongly, by human influence variables; and that the areas of lowest gene flow resistance largely coincide with the location of the Jaguar Conservation Units. Given that human activities significantly impact jaguar habitat use and gene flow, securing viable jaguar populations in anthropogenic landscapes also requires fostering peaceful human-wildlife coexistence. This is a complex challenge that cannot be met without transdisciplinary academic research and cross-sectoral, collaborative governance structures that effectively respond to the multiple challenges of such coexistence. With this in mind, I focus in Chapter 4 on carnivore conservation initiatives that apply transformative governance approaches to enact transformative change towards human-carnivore coexistence. Using the frameworks of transformative biodiversity governance and convivial conservation, I highlight in this chapter concrete pathways, supported by more inclusive, democratic forms of conservation decision-making and participation that promote truly transformative changes towards human-jaguar conviviality.}, language = {en} } @article{SpijkermanWackerWeithoffetal.2012, author = {Spijkerman, Elly and Wacker, Alexander and Weithoff, Guntram and Leya, Thomas}, title = {Elemental and fatty acid composition of snow algae in Arctic habitats}, series = {Frontiers in microbiology}, volume = {3}, journal = {Frontiers in microbiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-302X}, doi = {10.3389/fmicb.2012.00380}, pages = {15}, year = {2012}, abstract = {Red, orange or green snow is the macroscopic phenomenon comprising different eukaryotic algae. Little is known about the ecology and nutrient regimes in these algal communities. Therefore, eight snow algal communities from five intensively tinted snow fields in western Spitsbergen were analysed for nutrient concentrations and fatty acid (FA) composition. To evaluate the importance of a shift from green to red forms on the FA-variability of the field samples, four snow algal strains were grown under nitrogen replete and moderate light (+N+ML) or N-limited and high light (-N+HL) conditions. All eight field algal communities were dominated by red and orange cysts. Dissolved nutrient concentration of the snow revealed a broad range of NH4+ (<0.005-1.2 mg NI-1) and only low PO43- (< 18 mu g P I-1) levels. The external nutrient concentration did not reflect cellular nutrient ratios as C:N and C:P ratios of the communities were highest at locations containing relatively high concentrations of NH4- and PO43-. Molar N:P ratios ranged from 11 to 21 and did not suggest clear limitation of a single nutrient. On a per carbon basis, we found a 6-fold difference in total FA content between the eight snow algal communities, ranging from 50 to 300 mg FA g C-1. In multivariate analyses total FA content opposed the cellular N:C quota and a large part of the FA variability among field locations originated from the abundant FAs C181n-9, C18 2n-6, and C183n-3. Both field samples and snow algal strains grown under -N+HL conditions had high concentrations of C181n-9. FAs possibly accumulated due to the cessation of growth. Differences in color and nutritional composition between patches of snow algal communities within one snow field were not directly related to nutrient conditions. We propose that the highly patchy distribution of snow algae within and between snow fields may also result from differences in topographical and geological parameters such as slope, melting water rivulets, and rock formation.}, language = {en} } @phdthesis{Hippel2024, author = {Hippel, Barbara von}, title = {Long-term bacteria-fungi-plant associations in permafrost soils inferred from palaeometagenomics}, doi = {10.25932/publishup-63600}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-636009}, school = {Universit{\"a}t Potsdam}, pages = {xii, 198}, year = {2024}, abstract = {The arctic is warming 2 - 4 times faster than the global average, resulting in a strong feedback on northern ecosystems such as boreal forests, which cover a vast area of the high northern latitudes. With ongoing global warming, the treeline subsequently migrates northwards into tundra areas. The consequences of turning ecosystems are complex: on the one hand, boreal forests are storing large amounts of global terrestrial carbon and act as a carbon sink, dragging carbon dioxide out of the global carbon cycle, suggesting an enhanced carbon uptake with increased tree cover. On the other hand, with the establishment of trees, the albedo effect of tundra decreases, leading to enhanced soil warming. Meanwhile, permafrost thaws, releasing large amounts of previously stored carbon into the atmosphere. So far, mainly vegetation dynamics have been assessed when studying the impact of warming onto ecosystems. Most land plants are living in close symbiosis with bacterial and fungal communities, sustaining their growth in nutrient poor habitats. However, the impact of climate change on these subsoil communities alongside changing vegetation cover remains poorly understood. Therefore, a better understanding of soil community dynamics on multi millennial timescales is inevitable when addressing the development of entire ecosystems. Unravelling long-term cross-kingdom dependencies between plant, fungi, and bacteria is not only a milestone for the assessment of warming on boreal ecosystems. On top, it also is the basis for agriculture strategies to sustain society with sufficient food in a future warming world. The first objective of this thesis was to assess ancient DNA as a proxy for reconstructing the soil microbiome (Manuscripts I, II, III, IV). Research findings across these projects enable a comprehensive new insight into the relationships of soil microorganisms to the surrounding vegetation. First, this was achieved by establishing (Manuscript I) and applying (Manuscript II) a primer pair for the selective amplification of ancient fungal DNA from lake sediment samples with the metabarcoding approach. To assess fungal and plant co-variation, the selected primer combination (ITS67, 5.8S) amplifying the ITS1 region was applied on samples from five boreal and arctic lakes. The obtained data showed that the establishment of fungal communities is impacted by warming as the functional ecological groups are shifting. Yeast and saprotroph dominance during the Late Glacial declined with warming, while the abundance of mycorrhizae and parasites increased with warming. The overall species richness was also alternating. The results were compared to shotgun sequencing data reconstructing fungi and bacteria (Manuscripts III, IV), yielding overall comparable results to the metabarcoding approach. Nonetheless, the comparison also pointed out a bias in the metabarcoding, potentially due to varying ITS lengths or copy numbers per genome. The second objective was to trace fungus-plant interaction changes over time (Manuscripts II, III). To address this, metabarcoding targeting the ITS1 region for fungi and the chloroplast P6 loop for plants for the selective DNA amplification was applied (Manuscript II). Further, shotgun sequencing data was compared to the metabarcoding results (Manuscript III). Overall, the results between the metabarcoding and the shotgun approaches were comparable, though a bias in the metabarcoding was assumed. We demonstrated that fungal shifts were coinciding with changes in the vegetation. Yeast and lichen were mainly dominant during the Late Glacial with tundra vegetation, while warming in the Holocene lead to the expansion of boreal forests with increasing mycorrhizae and parasite abundance. Aside, we highlighted that Pinaceae establishment is dependent on mycorrhizal fungi such as Suillineae, Inocybaceae, or Hyaloscypha species also on long-term scales. The third objective of the thesis was to assess soil community development on a temporal gradient (Manuscripts III, IV). Shotgun sequencing was applied on sediment samples from the northern Siberian lake Lama and the soil microbial community dynamics compared to ecosystem turnover. Alongside, podzolization processes from basaltic bedrock were recovered (Manuscript III). Additionally, the recovered soil microbiome was compared to shotgun data from granite and sandstone catchments (Manuscript IV, Appendix). We assessed if the establishment of the soil microbiome is dependent on the plant taxon and as such comparable between multiple geographic locations or if the community establishment is driven by abiotic soil properties and as such the bedrock area. We showed that the development of soil communities is to a great extent driven by the vegetation changes and temperature variation, while time only plays a minor role. The analyses showed general ecological similarities especially between the granite and basalt locations, while the microbiome on species-level was rather site-specific. A greater number of correlated soil taxa was detected for deep-rooting boreal taxa in comparison to grasses with shallower roots. Additionally, differences between herbaceous taxa of the late Glacial compared to taxa of the Holocene were revealed. With this thesis, I demonstrate the necessity to investigate subsoil community dynamics on millennial time scales as it enables further understanding of long-term ecosystem as well as soil development processes and such plant establishment. Further, I trace long-term processes leading to podzolization which supports the development of applied carbon capture strategies under future global warming.}, language = {en} } @article{StillmanRailsbackGiskeetal.2015, author = {Stillman, Richard A. and Railsback, Steven Floyd and Giske, Jarl and Berger, Uta and Grimm, Volker}, title = {Making Predictions in a Changing World: The Benefits of Individual-Based Ecology}, series = {Bioscience}, volume = {65}, journal = {Bioscience}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0006-3568}, doi = {10.1093/biosci/biu192}, pages = {140 -- 150}, year = {2015}, abstract = {Ecologists urgently need a better ability to predict how environmental change affects biodiversity. We examine individual-based ecology (IBE), a research paradigm that promises better a predictive ability by using individual-based models (IBMs) to represent ecological dynamics as arising from how individuals interact with their environment and with each other. A key advantage of IBMs is that the basis for predictions-fitness maximization by individual organisms-is more general and reliable than the empirical relationships that other models depend on. Case studies illustrate the usefulness and predictive success of long-term IBE programs. The pioneering programs had three phases: conceptualization, implementation, and diversification. Continued validation of models runs throughout these phases. The breakthroughs that make IBE more productive include standards for describing and validating IBMs, improved and standardized theory for individual traits and behavior, software tools, and generalized instead of system-specific IBMs. We provide guidelines for pursuing IBE and a vision for future IBE research.}, language = {en} } @phdthesis{Stiegler2023, author = {Stiegler, Jonas}, title = {Mobile link functions in unpredictable agricultural landscapes}, doi = {10.25932/publishup-62202}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-622023}, school = {Universit{\"a}t Potsdam}, pages = {155}, year = {2023}, abstract = {Animal movement is a crucial aspect of life, influencing ecological and evolutionary processes. It plays an important role in shaping biodiversity patterns, connecting habitats and ecosystems. Anthropogenic landscape changes, such as in agricultural environments, can impede the movement of animals by affecting their ability to locate resources during recurring movements within home ranges and, on a larger scale, disrupt migration or dispersal. Inevitably, these changes in movement behavior have far-reaching consequences on the mobile link functions provided by species inhabiting such extensively altered matrix areas. In this thesis, I investigate the movement characteristics and activity patterns of the European hare (Lepus europaeus), aiming to understand their significance as a pivotal species in fragmented agricultural landscapes. I reveal intriguing results that shed light on the importance of hares for seed dispersal, the influence of personality traits on behavior and space use, the sensitivity of hares to extreme weather conditions, and the impacts of GPS collaring on mammals' activity patterns and movement behavior. In Chapter I, I conducted a controlled feeding experiment to investigate the potential impact of hares on seed dispersal. By additionally utilizing GPS data of hares in two contrasting landscapes, I demonstrated that hares play a vital role, acting as effective mobile linkers for many plant species in small and isolated habitat patches. The analysis of seed intake and germination success revealed that distinct seed traits, such as density, surface area, and shape, profoundly affect hares' ability to disperse seeds through endozoochory. These findings highlight the interplay between hares and plant communities and thus provide valuable insights into seed dispersal mechanisms in fragmented landscapes. By employing standardized behavioral tests in Chapter II, I revealed consistent behavioral responses among captive hares while simultaneously examining the intricate connection between personality traits and spatial patterns within wild hare populations. This analysis provides insights into the ecological interactions and dynamics within hare populations in agricultural habitats. Examining the concept of animal personality, I established a link between personality traits and hare behavior. I showed that boldness, measured through standardized tests, influences individual exploration styles, with shy and bold hares exhibiting distinct space use patterns. In addition to providing valuable insights into the role of animal personality in heterogeneous environments, my research introduced a novel approach demonstrating the feasibility of remotely assessing personality types using animal-borne sensors without additional disturbance of the focal individual. While climate conditions severely impact the activity and, consequently, the fitness of wildlife species across the globe, in Chapter III, I uncovered the sensitivity of hares to temperature, humidity, and wind speed during their peak reproduction period. I found a strong response in activity to high temperatures above 25°C, with a particularly pronounced effect during temperature extremes of over 35°C. The non-linear relationship between temperature and activity was characterized by contrasting responses observed for day and night. These findings emphasize the vulnerability of hares to climate change and the potential consequences for their fitness and population dynamics with the ongoing rise of temperature. Since such insights can only be obtained through capturing and tagging free-ranging animals, I assessed potential impacts and the recovery process post-collar attachment in Chapter IV. For this purpose, I examined the daily distances moved and the temporal-associated activity of 1451 terrestrial mammals out of 42 species during their initial tracking period. The disturbance intensity and the speed of recovery varied across species, with herbivores, females, and individuals captured and collared in relatively secluded study areas experiencing more pronounced disturbances due to limited anthropogenic influences. Mobile linkers are essential for maintaining biodiversity as they influence the dynamics and resilience of ecosystems. Furthermore, their ability to move through fragmented landscapes makes them a key component for restoring disturbed sites. Individual movement decisions determine the scale of mobile links, and understanding variations in space use among individuals is crucial for interpreting their functions. Climate change poses further challenges, with wildlife species expected to adjust their behavior, especially in response to high-temperature extremes, and comprehending the anthropogenic influence on animal movements will remain paramount to effective land use planning and the development of successful conservation strategies. This thesis provides a comprehensive ecological understanding of hares in agricultural landscapes. My research findings underscore the importance of hares as mobile linkers, the influence of personality traits on behavior and spatial patterns, the vulnerability of hares to extreme weather conditions, and the immediate consequences of collar attachment on mammalian movements. Thus, I contribute valuable insights to wildlife conservation and management efforts, aiding in developing strategies to mitigate the impact of environmental changes on hare populations. Moreover, these findings enable the development of methodologies aimed at minimizing the impacts of collaring while also identifying potential biases in the data, thereby benefiting both animal welfare and the scientific integrity of localization studies.}, language = {en} } @article{JosephVarino2021, author = {Joseph, May and Varino, Sofia}, title = {Multidirectional Thalassology}, series = {Shima : the international journal of research into Island cultures / Island Cultures Research Centre (ICRC)}, volume = {15}, journal = {Shima : the international journal of research into Island cultures / Island Cultures Research Centre (ICRC)}, number = {1}, publisher = {ICRC}, address = {Sydney}, issn = {1834-6049}, doi = {10.21463/shima.118}, pages = {256 -- 272}, year = {2021}, abstract = {This article merges discourses from Indian Ocean studies, Island Studies, performance art and decolonial methodologies to offer interdisciplinary ways of thinking about La Serenissima and its navigational histories. It is a transdisciplinary speculative entry, part empirical, part analytical, part applied phenomenology. We write this as a collaboration between two members of the Harmattan Theater company, a New York City based environmental performance ensemble applying environmental theory to site-specific performances engaging oceans and islands. The article is driven by the following research questions: What are the historic relationalities between the Venice lagoon and the Indian Ocean? How has the acqua alto flooding of Venice, accompanied by the mnemonic histories of the Venetian lagoon, impacted understandings of lagoon cultures in the global South, particularly the Malabar Coast of South Asia? This question has propelled the artistic and academic research of May Joseph and Sofia Varino across environmental history, island studies and performance. Drawing on histories of Venetian navigation and lagoon culture, Joseph and Varino propose a comparative lagoon aesthetics, one that would link two archipelagic regions, the Venetian Lagoon and the extended archipelagic region of the Laccadive Sea of India. While we believe a contemporary archipelagic study connecting these two regions does not currently exist, the historical archives suggest otherwise. We draw on the Venetian Camaldolese monk and cartographer Fra Mauro's Mappa Mundi from the 15th Century to initiate this comparative dialogue between North/Southisland ecologies, seafaring histories and ocean futures affected by climate change and rising sea levels. This research is part of a book that Joseph and Varino are co-writing on islands, archipelagos, coastal regions and climate change, drawing on a ten-year collaboration working with large-scale site-specific environmental performance as research, activism and embodied phenomenology.}, language = {en} } @phdthesis{Tirok2008, author = {Tirok, Katrin}, title = {Predator-prey dynamics under the influence of exogenous and endogenous regulation : a data-based modeling study on spring plankton with respect to climate change}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-24528}, school = {Universit{\"a}t Potsdam}, year = {2008}, abstract = {Understanding the interactions of predators and their prey and their responses to environmental changes is one of the striking features of ecological research. In this thesis, spring dynamics of phytoplankton and its consumers, zooplankton, were considered in dependence on the environmental conditions in a deep lake (Lake Constance) and a shallow marine water (mesocosms from Kiel Bight), using descriptive statistics, multiple regression models, and process-oriented dynamic simulation models. The development of the spring phytoplankton bloom, representing a dominant feature in the plankton dynamics in temperate and cold oceans and lakes, may depend on temperature, light, and mixing intensity, and the success of over-wintering phyto- and zooplankton. These factors are often correlated in the field. Unexpectedly, irradiance often dominated algal net growth rather than vertical mixing even in deep Lake Constance. Algal net losses from the euphotic layer to larger depth were induced by vertical mixing, but were compensated by the input from larger depth when algae were uniformly distributed over the water column. Dynamics of small, fast-growing algae were well predicted by abiotic variables, such as surface irradiance, vertical mixing intensity, and temperature. A simulation model additionally revealed that even in late winter, grazing may represent an important loss factor of phytoplankton during calm periods when losses due to mixing are small. The importance of losses by mixing and grazing changed rapidly as it depended on the variable mixing intensity. Higher temperature, lower global irradiance and enhanced mixing generated lower algal biomass and primary production in the dynamic simulation model. This suggests that potential consequences of climate change may partly counteract each other. The negative effect of higher temperatures on phytoplankton biomass was due to enhanced temperature-sensitive grazing losses. Comparing the results from deep Lake Constance to those of the shallow mesocosm experiments and simulations, confirmed the strong direct effect of light in contrast to temperature, and the importance of grazing already in early spring as soon as moderate algal biomasses developed. In Lake Constance, ciliates dominated the herbivorous zooplankton in spring. The start of ciliate net growth in spring was closely linked to that of edible algae, chlorophyll a and the vertical mixing intensity but independent of water temperature. The duration of ciliate dominance in spring was largely controlled by the highly variable onset of the phytoplankton bloom, and little by the less variable termination of the ciliate bloom by grazing of meta-zooplankton. During years with an extended spring bloom of algae and ciliates, they coexisted at relatively high biomasses over 15-30 generations, and internally forced species shifts were observed in both communities. Interception feeders alternated with filter feeders, and cryptomonads with non-cryptomonads in their relative importance. These dynamics were not captured by classical 1-predator-1-prey models which consistently predict pronounced predator-prey cycles or equilibria with either the predator or the prey dominating or suppressed. A multi-species predator-prey model with predator species differing in their food selectivity, and prey species in their edibility reproduced the observed patterns. Food-selectivity and edibility were related to the feeding and growth characteristics of the species, which represented ecological trade-offs. For example, the prey species with the highest edibility also had the highest maximum growth rate. Data and model revealed endogenous driven ongoing species alternations, which yielded a higher variability in species-specific biomasses than in total predator and prey biomass. This holds for a broad parameter space as long as the species differ functionally. A more sophisticated model approach enabled the simulation of a continuum of different functional types and adaptability of predator and prey communities to altered environmental conditions, and the maintenance of a rather low model complexity, i.e., low number of equations and free parameters. The community compositions were described by mean functional traits --- prey edibility and predator food-selectivity --- and their variances. The latter represent the functional diversity of the communities and thus, the potential for adaptation. Oscillations in the mean community trait values indicated species shifts. The community traits were related to growth and grazing characteristics representing similar trade-offs as in the multi-species model. The model reproduced the observed patterns, when nonlinear relationships between edibility and capacity, and edibility and food availability for the predator were chosen. A constant minimum amount of variance represented ongoing species invasions and thus, preserved a diversity which allows adaptation on a realistic time-span.}, language = {en} } @misc{BaylisKowalskiVoigtetal.2016, author = {Baylis, Alastair M. M. and Kowalski, Gabriele Joanna and Voigt, Christian C. and Orben, Rachael A. and Trillmich, Fritz and Staniland, Iain J. and Hoffman, Joseph I.}, title = {Pup vibrissae stable isotopes reveal geographic differences in adult female southern sea lion habitat use during gestation}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {546}, issn = {1866-8372}, doi = {10.25932/publishup-41184}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-411842}, pages = {11}, year = {2016}, abstract = {Individuals within populations often differ substantially in habitat use, the ecological consequences of which can be far reaching. Stable isotope analysis provides a convenient and often cost effective means of indirectly assessing the habitat use of individuals that can yield valuable insights into the spatiotemporal distribution of foraging specialisations within a population. Here we use the stable isotope ratios of southern sea lion (Otaria flavescens) pup vibrissae at the Falkland Islands, in the South Atlantic, as a proxy for adult female habitat use during gestation. A previous study found that adult females from one breeding colony (Big Shag Island) foraged in two discrete habitats, inshore (coastal) or offshore (outer Patagonian Shelf). However, as this species breeds at over 70 sites around the Falkland Islands, it is unclear if this pattern is representative of the Falkland Islands as a whole. In order to characterize habitat use, we therefore assayed carbon (delta C-13) and nitrogen (delta N-15) ratios from 65 southern sea lion pup vibrissae, sampled across 19 breeding colonies at the Falkland Islands. Model-based clustering of pup isotope ratios identified three distinct clusters, representing adult females that foraged inshore, offshore, and a cluster best described as intermediate. A significant difference was found in the use of inshore and offshore habitats between West and East Falkland and between the two colonies with the largest sample sizes, both of which are located in East Falkland. However, habitat use was unrelated to the proximity of breeding colonies to the Patagonian Shelf, a region associated with enhanced biological productivity. Our study thus points towards other factors, such as local oceanography and its influence on resource distribution, playing a prominent role in inshore and offshore habitat use.}, language = {en} } @phdthesis{Clodong2004, author = {Clodong, S{\´e}bastien}, title = {Recurrent outbreaks in ecology : chaotic dynamics in complex networks}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0001626}, school = {Universit{\"a}t Potsdam}, year = {2004}, abstract = {Gegenstand der Dissertation ist die Untersuchung von wiederkehrenden Ausbr{\"u}chen (wie z.B. Epidemien) in der Natur. Dies gelang anhand von Modellen, die die Dynamik von Phytoplankton und die Ausbreitung von Krankheiten zwischen St{\"a}dten beschreiben. Diese beide Systeme bilden hervorragende Beispiele f{\"u}r solche Ph{\"a}nomene. Die Frage, ob die in der Zeit wiederkehrenden Ausbr{\"u}che ein Ausdruck chaotischer Dynamik sein k{\"o}nnen, ist aktuell in der {\"O}kologie und fasziniert Wissenschaftler dieser Disziplin. Wir konnten zeigen, dass sich das Plankton-Modell im Falle von periodischem Antreiben {\"u}ber die N{\"a}hrstoffe in einem chaotischen Regime befindet. Diese Dynamik wurde als die komplexe Wechselwirkung zweier Oszillatoren verstanden. Ebenfalls wurde die Ausbreitung von Epidemien in Netzwerken wechselwirkender St{\"a}dte mit unterschiedlichen Gr{\"o}ssen untersucht. Daf{\"u}r wurde zun{\"a}chst die Kopplung zwischen zwei St{\"a}dten als Verh{\"a}ltnis der Stadtgr{\"o}ssen eingef{\"u}hrt. Es konnte gezeigt werden, dass das System sich in einem globalen zweij{\"a}hrigen Zyklus, der auch in den realen Daten beobachtet wird, befinden kann. Der Effekt von Heterogenit{\"a}t in der Gr{\"o}sseverteilung ist durch gewichtete Kopplung von generischen Modellen (Zelt- und Logistische Abbildung) in Netzwerken im Detail untersucht worden. Eine neue Art von Kopplungsfunktion mit nichtlinearer S{\"a}ttigung wurde eingef{\"u}hrt, um die Stabilit{\"a}t des Systems zu gew{\"a}hrleisten. Diese Kopplung beinhaltet einen Parameter, der es erlaubt, die Netzwerktopologie von globaler Kopplung in gerichtete Netzwerke gleichm{\"a}ssig umzuwandeln. Die Dynamik des Systems wurde anhand von Bifurkationsdiagrammen untersucht. Zum Verst{\"a}ndnis dieser Dynamik wurde eine effektive Theorie, die die beobachteten Bifurkationen sehr gut nachahmt, entwickelt.}, language = {en} } @phdthesis{Milles2022, author = {Milles, Alexander}, title = {Sources and consequences of intraspecific trait variation in movement behaviour}, doi = {10.25932/publishup-56501}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-565011}, school = {Universit{\"a}t Potsdam}, pages = {xvi, 225}, year = {2022}, abstract = {Variation in traits permeates and affects all levels of biological organisation, from within individuals to between species. Yet, intraspecific trait variation (ITV) is not sufficiently represented in many ecological theories. Instead, species averages are often assumed. Especially ITV in behaviour has only recently attracted more attention as its pervasiveness and magnitude became evident. The surge in interest in ITV in behaviour was accompanied by a methodological and technological leap in the field of movement ecology. Many aspects of behaviour become visible via movement, allowing us to observe inter-individual differences in fundamental processes such as foraging, mate searching, predation or migration. ITV in movement behaviour may result from within-individual variability and consistent, repeatable among-individual differences. Yet, questions on why such among-individual differences occur in the first place and how they are integrated with life-history have remained open. Furthermore, consequences of ITV, especially of among-individual differences in movement behaviour, on populations and species communities are not sufficiently understood. In my thesis, I approach timely questions on the sources and consequences of ITV, particularly, in movement behaviour. After outlining fundamental concepts and the current state of knowledge, I approach these questions by using agent-based models to integrate concepts from behavioural and movement ecology and to develop novel perspectives. Modern coexistence theory is a central pillar of community ecology, yet, insufficiently considers ITV in behaviour. In chapter 2, I model a competitive two-species system of ground-dwelling, central-place foragers to investigate the consequences of among-individual differences in movement behaviour on species coexistence. I show that the simulated among-individual differences, which matched with empirical data, reduce fitness differences betweem species, i.e. provide an equalising coexistence mechanism. Furthermore, I explain this result mechanistically and, thus, resolve an apparent ambiguity of the consequences of ITV on species coexistence described in previous studies. In chapter 3, I turn the focus to sources of among-individual differences in movement behaviour and their potential integration with life-history. The pace-of-life syndrome (POLS) theory predicts that the covariation between among-individual differences in behaviour and life-history is mediated by a trade-off between early and late reproduction. This theory has generated attention but is also currently scrutinised. In chapter 3, I present a model which supports a recent conceptual development that suggests fluctuating density-dependent selection as a cause of the POLS. Yet, I also identified processes that may alter the association between movement behaviour and life-history across levels of biological organization. ITV can buffer populations, i.e. reduce their extinction risk. For instance, among-individual differences can mediate portfolio effects or increase evolvability and, thereby, facilitate rapid evolution which can alleviate extinction risk. In chapter 4, I review ITV, environmental heterogeneity, and density-dependent processes which constitute local buffer mechanisms. In the light of habitat isolation, which reduces connectivity between populations, local buffer mechanisms may become more relevant compared to dispersal-related regional buffer mechanisms. In this chapter, I argue that capacities, latencies, and interactions of local buffer mechanisms should motivate more process-based and holistic integration of local buffer mechanisms in theoretical and empirical studies. Recent perspectives propose to apply principles from movement and community ecology to study filamentous fungi. It is an open question whether and how the arrangement and geometry of microstructures select for certain movement traits, and, thus, facilitate coexistence-stabilising niche partitioning. As a coauthor of chapter 5, I developed an agent-based model of hyphal tips navigating in soil-like microstructures along a gradient of soil porosity. By measuring network properties, we identified changes in the optimal movement behaviours along the gradient. Our findings suggest that the soil architecture facilitates niche partitioning. The core chapters are framed by a general introduction and discussion. In the general introduction, I outline fundamental concepts of movement ecology and describe theory and open questions on sources and consequences of ITV in movement behaviour. In the general discussion, I consolidate the findings of the core chapters and critically discuss their respective value and, if applicable, their impact. Furthermore, I emphasise promising avenues for further research.}, language = {en} }