@article{WiederkehrBousquetZiemannetal.2011, author = {Wiederkehr, Michael and Bousquet, Romain and Ziemann, Martin Andreas and Berger, Alfons and Schmid, Stefan M.}, title = {3-D assessment of peak-metamorphic conditions by Raman spectroscopy of carbonaceous material an example from the margin of the Lepontine dome (Swiss Central Alps)}, series = {International journal of earth sciences}, volume = {100}, journal = {International journal of earth sciences}, number = {5}, publisher = {Springer}, address = {New York}, issn = {1437-3254}, doi = {10.1007/s00531-010-0622-2}, pages = {1029 -- 1063}, year = {2011}, abstract = {This study monitors regional changes in the crystallinity of carbonaceous matter (CM) by applying Micro-Raman spectroscopy to a total of 214 metasediment samples (largely so-called Bundnerschiefer) dominantly metamorphosed under blueschist- to amphibolite-facies conditions. They were collected within the northeastern margin of the Lepontine dome and easterly adjacent areas of the Swiss Central Alps. Three-dimensional mapping of isotemperature contours in map and profile views shows that the isotemperature contours associated with the Miocene Barrow-type Lepontine metamorphic event cut across refolded nappe contacts, both along and across strike within the northeastern margin of the Lepontine dome and adjacent areas. Further to the northeast, the isotemperature contours reflect temperatures reached during the Late Eocene subduction-related blueschist-facies event and/or during subsequent near-isothermal decompression; these contours appear folded by younger, large-scale post-nappe-stacking folds. A substantial jump in the recorded maximum temperatures across the tectonic contact between the frontal Adula nappe complex and surrounding metasediments indicates that this contact accommodated differential tectonic movement of the Adula nappe with respect to the enveloping Bundnerschiefer after maximum temperatures were reached within the northern Adula nappe, i.e. after Late Eocene time.}, language = {en} } @article{KrmičekTimmermanZiemannetal.2020, author = {Krm{\´i}ček, Luk{\´a}š and Timmerman, Martin Jan and Ziemann, Martin Andreas and Sudo, Masafumi and Ulrych, Jaromir}, title = {40Ar/39Ar step-heating dating of phlogopite and kaersutite megacrysts from the Železn{\´a} hůrka (Eisenb{\"u}hl) Pleistocene scoria cone, Czech Republic}, series = {Geologica Carpathica}, volume = {71}, journal = {Geologica Carpathica}, number = {4}, publisher = {Veda}, address = {Bratislava}, issn = {1335-0552}, doi = {10.31577/GeolCarp.71.4.6}, pages = {382 -- 387}, year = {2020}, abstract = {(40)A/Ar-39 step-heating of mica and amphibole megacrysts from hauyne-bearing olivine melilitite scoria/tephra from the Zelezna hurka yielded a 435 +/- 108 ka isotope correlation age for phlogopite and a more imprecise 1.55 Ma total gas age of the kaersutite megacryst. The amphibole megacrysts may constitute the first, and the younger phlogopite megacrysts the later phase of mafic, hydrous melilitic magma crystallization. It cannot be ruled out that the amphibole megacrysts are petrogenetically unrelated to tephra and phlogopite megacrysts and were derived from mantle xenoliths or disaggregated older, deep crustal pegmatites. This is in line both with the rarity of amphibole at Zelezna hurka and with the observed signs of magmatic resorption at the edges of amphibole crystals.}, language = {en} } @article{FerreroBorghiniWunderetal.2018, author = {Ferrero, Silvio and Borghini, Alessia and Wunder, Bernd and Walle, Markus and G{\"u}nter, Christina and Ziemann, Martin Andreas}, title = {A treasure chest full of nanogranitoids}, series = {Metamorphic Geology: Microscale to Mountain Belts}, volume = {478}, journal = {Metamorphic Geology: Microscale to Mountain Belts}, publisher = {Geological Soc Publishing House}, address = {Bath}, isbn = {978-1-78620-400-4}, issn = {0305-8719}, doi = {10.1144/SP478.19}, pages = {13 -- 38}, year = {2018}, abstract = {The central European Bohemian Massif has undergone over two centuries of scientific investigation which has made it a pivotal area for the development and testing of modern geological theories. The discovery of melt inclusions in high-grade rocks, either crystallized as nanogranitoids or as glassy inclusions, prompted the re-evaluation of the area with an 'inclusionist' eye. Melt inclusions have been identified in a wide range of rocks, including felsic/perpotassic granulites, migmatites, eclogites and garnet clinopyroxenites, all the result of melting events albeit over a wide range of pressure/temperature conditions (800-1000°C/0.5-5 GPa). This contribution provides an overview of such inclusions and discusses the qualitative and quantitative constraints they provide for melting processes, and the nature of melts and fluids involved in these processes. In particular, data on trace-element signatures of melt inclusions trapped at mantle depths are presented and discussed. Moreover, experimental re-homogenization of nanogranitoids provided microstructural criteria allowing assessment of the conditions at which melt and host are mutually stable during melting. Overall this work aims to provide guidelines and suggestions for petrologists wishing to explore the fascinating field of melt inclusions in metamorphic terranes worldwide, based on the newest discoveries from the still-enigmatic Bohemian Massif.}, language = {en} } @article{FrijiaDiLuciaVicedoetal.2012, author = {Frijia, Gianluca and Di Lucia, Matteo and Vicedo, Vicent and G{\"u}nter, Christina and Ziemann, Martin Andreas and Mutti, Maria}, title = {An extraordinary single-celled architect A multi-technique study of the agglutinated shell of the larger foraminifer Mesorbitolina from the Lower Cretaceous of southern Italy}, series = {Marine micropaleontology}, volume = {90-91}, journal = {Marine micropaleontology}, number = {7}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0377-8398}, doi = {10.1016/j.marmicro.2012.04.002}, pages = {60 -- 71}, year = {2012}, abstract = {Orbitolinids are larger foraminifera widespread in Lower Cretaceous shallow-water carbonates of the Tethyan realm. They are among the most important fossil groups used for Biostratigraphy. Despite this and although the structural features of the group have been described in detail, very little is known about the composition of their agglutinated test and the process by which they selected foreign grains. In this study, the test of Orbitolina d'Orbigny, 1850 (subgenus Mesorbitolina Schroeder, 1962) from Aptian shallow-water carbonate deposits of southern Italy has been studied in detail. We combine petrographic techniques (optical microscope and SEM) with energy-dispersive x-ray spectrometry (EDS), electron probe microanalyzer (EPMA), X-ray diffraction and Raman spectroscopy analyses. The results show that the test of Mesorbitolina is composed of carbonate and non-carbonate agglutinated grains with the latter distributed across the test with a specific pattern, moving from the marginal to the central zone. In the marginal zone, non-carbonate grains are found only in the epidermis and along the septa which are composed of quartz, with smaller amounts of illite/muscovite and K-feldspar grains. In the central zone of the test, non-carbonate grains are distributed in two ways. Coarse grains of quartz and K-feldspar are abundant and randomly placed in the endoskeleton embedded in a mosaic of minute carbonate grains. Flat grains, mainly of illite/muscovite constitute the external part of the septa. Our observations indicate that Mesorbitolina did select and place agglutinated grains across its test, mainly according to their shape, whereas it did not select particles according to grain size. The distribution of agglutinated particles according to their mineralogical composition shows some contradictory evidence and therefore, at the moment, grain selection in function of mineralogy cannot be completely confirmed or ruled out. Analogies in the test composition of Mesorbitolina specimens from coeval deposits from different areas of southern Italy indicate that the features of their agglutinated test are typical characters of the genus Mesorbitolina. However, it is still unclear what advantage was obtained by the foraminifer by the described test features.}, language = {en} } @article{ZiemannMadariaga2020, author = {Ziemann, Martin Andreas and Madariaga, Juan Manuel}, title = {Applications of Raman spectroscopy in art and archaeology}, series = {Journal of Raman spectroscopy}, volume = {52}, journal = {Journal of Raman spectroscopy}, number = {1}, publisher = {Wiley}, address = {Hoboken}, issn = {0377-0486}, doi = {10.1002/jrs.6054}, pages = {8 -- 14}, year = {2020}, abstract = {The 10th edition of the International Congress on the Application of Raman Spectroscopy in Art and Archaeology (RAA2019) was held in Potsdam (Germany) from 3 to 7 September 2019, with eight keynote lectures, 35 oral presentations and 18 Poster Presentations. The number of active participants was 68 delegates from 20 countries among the 236 authors that presented at least one work.}, language = {en} } @article{FerreroWunderZiemannetal.2016, author = {Ferrero, Silvio and Wunder, Bernd and Ziemann, Martin Andreas and Waelle, Markus}, title = {Carbonatitic and granitic melts produced under conditions of primary immiscibility during anatexis in the lower crust}, series = {Earth \& planetary science letters}, volume = {454}, journal = {Earth \& planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2016.08.043}, pages = {121 -- 131}, year = {2016}, abstract = {Carbonatites are peculiar magmatic rocks with mantle-related genesis, commonly interpreted as the products of melting of CO2-bearing peridotites, or resulting from the chemical evolution of mantle derived magmas, either through extreme "differentiation or secondary immiscibility. Here we report the first finding of anatectic carbonatites of crustal origin, preserved as calcite-rich polycrystalline inclusions in garnet from low-to-medium pressure migmatites of the Oberpfalz area, SW Bohemian Massif (Central Europe). These inclusions originally trapped a melt of calciocarbonatitic composition with a characteristic enrichment in Ba, Sr and LREE. This interpretation is supported by the results of a detailed microstructural and microchemical investigation, as well as re-melting experiments using a piston cylinder apparatus. Carbonatitic inclusions coexist in the same cluster with crystallized silicate melt inclusions (nanogranites) and COH fluid inclusions, suggesting conditions of primary immiscibility between two melts and a fluid during anatexis. The production of both carbonatitic and granitic melts during the same anatectic event requires a suitable heterogeneous protolith. This may be represented by a sedimentary sequence containing marble lenses of limited extension, similar to the one still visible in the adjacent central Moldanubian Zone. The presence of CO2-rich fluid inclusions suggests furthermore that high CO2 activity during anatexis may be required to stabilize a carbonate-rich melt in a silica-dominated, system. This natural occurrence displays a remarkable similarity with experiments on carbonate-silicate melt immiscibility, where CO2 saturation is a condition commonly imposed. In conclusion, this study shows how the investigation of partial melting through melt inclusion studies may unveil unexpected processes whose evidence, while preserved in stiff minerals such as garnet, is completely obliterated in the rest of the rock due to metamorphic re-equilibration. Our results thus provide invaluable new insights into the processes which shape the geochemical evolution of our planet, such as the redistribution of carbon and strategic metals during orogenesis. (C) 2016 Elsevier B.V. All rights reserved.}, language = {en} } @misc{BorghiniFerreroO'Brienetal.2019, author = {Borghini, Alessia and Ferrero, Silvio and O'Brien, Patrick J. and Laurent, Oscar and G{\"u}nter, Christina and Ziemann, Martin Andreas}, title = {Cryptic metasomatic agent measured in situ in Variscan mantle rocks}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {976}, issn = {1866-8372}, doi = {10.25932/publishup-47459}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-474592}, pages = {207 -- 234}, year = {2019}, abstract = {Garnet of eclogite (formerly termed garnet clinopyroxenite) hosted in lenses of orogenic garnet peridotite from the Granulitgebirge, NW Bohemian Massif, contains unique inclusions of granitic melt, now either glassy or crystallized. Analysed glasses and re-homogenized inclusions are hydrous, peraluminous, and enriched in highly incompatible elements characteristic of the continental crust such as Cs, Li, B, Pb, Rb, Th, and U. The original melt thus represents a pristine, chemically evolved metasomatic agent, which infiltrated the mantle via deep continental subduction during the Variscan orogeny. The bulk chemical composition of the studied eclogites is similar to that of Fe-rich basalt and the enrichment in LILE and U suggest a subduction-related component. All these geochemical features confirm metasomatism. In comparison with many other garnet+clinopyroxene-bearing lenses in peridotites of the Bohemian Massif, the studied samples from Rubinberg and Klatschm{\"u}hle are more akin to eclogite than pyroxenites, as reflected in high jadeite content in clinopyroxene, relatively low Mg, Cr, and Ni but relatively high Ti. However, trace elements of both bulk rock and individual mineral phases show also important differences making these samples rather unique. Metasomatism involving a melt requiring a trace element pattern very similar to the composition reported here has been suggested for the source region of rocks of the so-called durbachite suite, that is, ultrapotassic melanosyenites, which are found throughout the high-grade Variscan basement. Moreover, the Th, U, Pb, Nb, Ta, and Ti patterns of these newly studied melt inclusions (MI) strongly resemble those observed for peridotite and its enclosed pyroxenite from the T-7 borehole (Star{\´e}, Česk{\´e} Středhoři Mountains) in N Bohemia. This suggests that a similar kind of crustal-derived melt also occurred here. This study of granitic MI in eclogites from peridotites has provided the first direct characterization of a preserved metasomatic melt, possibly responsible for the metasomatism of several parts of the mantle in the Variscides.}, language = {en} } @article{BorghiniFerreroO’Brienetal.2019, author = {Borghini, Alessia and Ferrero, Silvio and O'Brien, Patrick J. and Laurent, Oscar and G{\"u}nter, Christina and Ziemann, Martin Andreas}, title = {Cryptic metasomatic agent measured in situ in Variscan mantle rocks}, volume = {38}, publisher = {Wiley-Blackwell}, address = {Oxford [u.a.]}, issn = {1525-1314}, doi = {10.1111/jmg.12519}, pages = {207 -- 234}, year = {2019}, abstract = {Garnet of eclogite (formerly termed garnet clinopyroxenite) hosted in lenses of orogenic garnet peridotite from the Granulitgebirge, NW Bohemian Massif, contains unique inclusions of granitic melt, now either glassy or crystallized. Analysed glasses and re-homogenized inclusions are hydrous, peraluminous, and enriched in highly incompatible elements characteristic of the continental crust such as Cs, Li, B, Pb, Rb, Th, and U. The original melt thus represents a pristine, chemically evolved metasomatic agent, which infiltrated the mantle via deep continental subduction during the Variscan orogeny. The bulk chemical composition of the studied eclogites is similar to that of Fe-rich basalt and the enrichment in LILE and U suggest a subduction-related component. All these geochemical features confirm metasomatism. In comparison with many other garnet+clinopyroxene-bearing lenses in peridotites of the Bohemian Massif, the studied samples from Rubinberg and Klatschm{\"u}hle are more akin to eclogite than pyroxenites, as reflected in high jadeite content in clinopyroxene, relatively low Mg, Cr, and Ni but relatively high Ti. However, trace elements of both bulk rock and individual mineral phases show also important differences making these samples rather unique. Metasomatism involving a melt requiring a trace element pattern very similar to the composition reported here has been suggested for the source region of rocks of the so-called durbachite suite, that is, ultrapotassic melanosyenites, which are found throughout the high-grade Variscan basement. Moreover, the Th, U, Pb, Nb, Ta, and Ti patterns of these newly studied melt inclusions (MI) strongly resemble those observed for peridotite and its enclosed pyroxenite from the T-7 borehole (Star{\´e}, Česk{\´e} Středhoři Mountains) in N Bohemia. This suggests that a similar kind of crustal-derived melt also occurred here. This study of granitic MI in eclogites from peridotites has provided the first direct characterization of a preserved metasomatic melt, possibly responsible for the metasomatism of several parts of the mantle in the Variscides.}, language = {en} } @article{KotkovaO'BrienZiemann2011, author = {Kotkova, Jana and O'Brien, Patrick J. and Ziemann, Martin Andreas}, title = {Diamond and coesite discovered in Saxony-type granulite solution to the Variscan garnet peridotite enigma}, series = {Geology}, volume = {39}, journal = {Geology}, number = {7}, publisher = {American Institute of Physics}, address = {Boulder}, issn = {0091-7613}, doi = {10.1130/G31971.1}, pages = {667 -- 670}, year = {2011}, abstract = {The pressures required for diamond and coesite formation far exceed conditions reached by even the deepest present-day orogenic crustal roots. Therefore the occurrence of metamorphosed continental crust containing these minerals requires processes other than crustal thickening to have operated in the past. Here we report the first in situ finding of diamond and coesite, characterized by micro-Raman spectroscopy, in high-pressure granulites otherwise indistinguishable from granulites found associated with garnet peridotite throughout the European Variscides. Our discovery confirms the provenance of Europe's first reliable diamond, the "Bohemian diamond," found in A.D. 1870, and also represents the first robust evidence for ultrahigh-pressure conditions in a major Variscan crustal rock type. A process of deep continental subduction is required to explain the metamorphic pressures and the granulite-garnet peridotite association, and thus tectonometamorphic models for these rocks involving a deep orogenic crustal root need to be significantly modified.}, language = {en} } @article{BorghiniFerreroWunderetal.2018, author = {Borghini, Alessia and Ferrero, Silvio and Wunder, Bernd and Laurent, Oscar and Ziemann, Martin Andreas}, title = {Granitoid melt inclusions in orogenic peridotite and the origin of garnet clinopyroxenite}, series = {Geology}, volume = {46}, journal = {Geology}, number = {11}, publisher = {American Institute of Physics}, address = {Boulder}, issn = {0091-7613}, doi = {10.1130/G45316.1}, pages = {1007 -- 1010}, year = {2018}, abstract = {Granitic melt inclusions were found in layers of garnet clinopyroxenites from orogenic peridotites hosted in high-pressure felsic granulites of the Granulitgebirge, central Europe. The inclusions are both glassy and crystallized, and occur as clusters in the garnet. Microstructural features suggest that the inclusions formed while garnet was growing as a peritectic phase, likely alongside clinopyroxene. The chemistry of the melt, in particular its trace element signature, shows a crustal contribution, probably due to the involvement of phengite in the melt-producing reaction, most likely in the presence of a fluid. The presence of a granitoid melt in mantle rocks may be the result of localized melting of a phengite-bearing protolith either already present in the peridotites or, more likely, within the local deeply subducted crustal units. In the latter case, the melt would have infiltrated the peridotites and generated pyroxenite via metasomatism. In either case, the presence of granitoid inclusions in orogenic peridotite provides direct evidence for a genetic connection between a high-pressure crustal melt and garnet pyroxenites. The in situ characterization of these remnants of natural melt provides direct quantitative constraints on (one of) the agents responsible for the interaction between crust and mantle.}, language = {en} }