@article{Vater1998, author = {Vater, Marianne}, title = {Adaptation of the auditory periphery of bats for echolocation}, isbn = {1-56098-825-8}, year = {1998}, language = {en} } @article{Vater2000, author = {Vater, Marianne}, title = {Auditory brainstem processing in bats}, isbn = {3-527-27587- 8}, year = {2000}, language = {en} } @article{KoesslVossMoraetal.2012, author = {K{\"o}ssl, Manfred and Voss, Cornelia and Mora, Emanuel C. and Macias, Silvio and F{\"o}ller, Elisabeth and Vater, Marianne}, title = {Auditory cortex of newborn bats is prewired for echolocation}, series = {Nature Communications}, volume = {3}, journal = {Nature Communications}, number = {2}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/ncomms1782}, pages = {7}, year = {2012}, abstract = {Neuronal computation of object distance from echo delay is an essential task that echolocating bats must master for spatial orientation and the capture of prey. In the dorsal auditory cortex of bats, neurons specifically respond to combinations of short frequency-modulated components of emitted call and delayed echo. These delay-tuned neurons are thought to serve in target range calculation. It is unknown whether neuronal correlates of active space perception are established by experience-dependent plasticity or by innate mechanisms. Here we demonstrate that in the first postnatal week, before onset of echolocation and flight, dorsal auditory cortex already contains functional circuits that calculate distance from the temporal separation of a simulated pulse and echo. This innate cortical implementation of a purely computational processing mechanism for sonar ranging should enhance survival of juvenile bats when they first engage in active echolocation behaviour and flight.}, language = {en} } @article{KoesslHechavarriaVossetal.2015, author = {K{\"o}ssl, Manfred and Hechavarria, Julio and Voss, Cornelia and Schaefer, Markus and Vater, Marianne}, title = {Bat auditory cortex - model for general mammalian auditory computation or special design solution for active time perception?}, series = {European journal of neuroscience}, volume = {41}, journal = {European journal of neuroscience}, number = {5}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0953-816X}, doi = {10.1111/ejn.12801}, pages = {518 -- 532}, year = {2015}, abstract = {Audition in bats serves passive orientation, alerting functions and communication as it does in other vertebrates. In addition, bats have evolved echolocation for orientation and prey detection and capture. This put a selective pressure on the auditory system in regard to echolocation-relevant temporal computation and frequency analysis. The present review attempts to evaluate in which respect the processing modules of bat auditory cortex (AC) are a model for typical mammalian AC function or are designed for echolocation-unique purposes. We conclude that, while cortical area arrangement and cortical frequency processing does not deviate greatly from that of other mammals, the echo delay time-sensitive dorsal cortex regions contain special designs for very powerful time perception. Different bat species have either a unique chronotopic cortex topography or a distributed salt-and-pepper representation of echo delay. The two designs seem to enable similar behavioural performance.}, language = {en} } @article{HechavarriaMaciasVateretal.2013, author = {Hechavarria, Julio C. and Macias, Silvio and Vater, Marianne and Voss, Cornelia and Mora, Emanuel C. and Kossl, Manfred}, title = {Blurry topography for precise target-distance computations in the auditory cortex of echolocating bats}, series = {Nature Communications}, volume = {4}, journal = {Nature Communications}, number = {10}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/ncomms3587}, pages = {11}, year = {2013}, abstract = {Echolocating bats use the time from biosonar pulse emission to the arrival of echo (defined as echo delay) to calculate the space depth of targets. In the dorsal auditory cortex of several species, neurons that encode increasing echo delays are organized rostrocaudally in a topographic arrangement defined as chronotopy. Precise chronotopy could be important for precise target-distance computations. Here we show that in the cortex of three echolocating bat species (Pteronotus quadridens, Pteronotus parnellii and Carollia perspicillata), chronotopy is not precise but blurry. In all three species, neurons throughout the chronotopic map are driven by short echo delays that indicate the presence of close targets and the robustness of map organization depends on the parameter of the receptive field used to characterize neuronal tuning. The timing of cortical responses (latency and duration) provides a binding code that could be important for assembling acoustic scenes using echo delay information from objects with different space depths.}, language = {en} } @article{KemmerVater2001, author = {Kemmer, Michaela and Vater, Marianne}, title = {Cellular and subcellular distribution of AMPA-type glutamate receptor subunits and metabotropic glutamate receptor 1alpha in the cochlear nucleus of the horseshoe bat (Rhinolophus rouxi).}, issn = {0378-5955}, year = {2001}, language = {en} } @article{Vater2000, author = {Vater, Marianne}, title = {Cochlear specializations in bats}, isbn = {3-527-27587-8}, year = {2000}, language = {en} } @article{Vater2000, author = {Vater, Marianne}, title = {Cochlear specializations in bats}, isbn = {3-527-27587-8}, year = {2000}, language = {en} } @article{VaterKoessl2011, author = {Vater, Marianne and Koessl, Manfred}, title = {Comparative aspects of cochlear functional organization in mammals}, series = {Hearing research}, volume = {273}, journal = {Hearing research}, number = {1-2}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0378-5955}, doi = {10.1016/j.heares.2010.05.018}, pages = {89 -- 99}, year = {2011}, abstract = {This review addresses the functional organization of the mammalian cochlea under a comparative and evolutionary perspective. A comparison of the monotreme cochlea with that of marsupial and placental mammals highlights important evolutionary steps towards a hearing organ dedicated to process higher frequencies and a larger frequency range than found in non-mammalian vertebrates. Among placental mammals, there are numerous cochlear specializations which relate to hearing range in adaptation to specific habitats that are superimposed on a common basic design. These are illustrated by examples of specialist ears which evolved excellent high frequency hearing and echolocation (bats and dolphins) and by the example of subterranean rodents with ears devoted to processing low frequencies. Furthermore, structural functional correlations important for tonotopic cochlear organization and predictions of hearing capabilities are discussed.}, language = {en} } @article{PaulMamonekeneVateretal.2015, author = {Paul, Christiane and Mamonekene, Victor and Vater, Marianne and Feulner, Philine G. D. and Engelmann, Jacob and Tiedemann, Ralph and Kirschbaum, Frank}, title = {Comparative histology of the adult electric organ among four species of the genus Campylomormyrus (Teleostei: Mormyridae)}, series = {Journal of comparative physiology : A, Neuroethology, sensory, neural, and behavioral physiology}, volume = {201}, journal = {Journal of comparative physiology : A, Neuroethology, sensory, neural, and behavioral physiology}, number = {4}, publisher = {Springer}, address = {New York}, issn = {0340-7594}, doi = {10.1007/s00359-015-0995-6}, pages = {357 -- 374}, year = {2015}, abstract = {The electric organ (EO) of weakly electric mormyrids consists of flat, disk-shaped electrocytes with distinct anterior and posterior faces. There are multiple species-characteristic patterns in the geometry of the electrocytes and their innervation. To further correlate electric organ discharge (EOD) with EO anatomy, we examined four species of the mormyrid genus Campylomormyrus possessing clearly distinct EODs. In C. compressirostris, C. numenius, and C. tshokwe, all of which display biphasic EODs, the posterior face of the electrocytes forms evaginations merging to a stalk system receiving the innervation. In C. tamandua that emits a triphasic EOD, the small stalks of the electrocyte penetrate the electrocyte anteriorly before merging on the anterior side to receive the innervation. Additional differences in electrocyte anatomy among the former three species with the same EO geometry could be associated with further characteristics of their EODs. Furthermore, in C. numenius, ontogenetic changes in EO anatomy correlate with profound changes in the EOD. In the juvenile the anterior face of the electrocyte is smooth, whereas in the adult it exhibits pronounced surface foldings. This anatomical difference, together with disparities in the degree of stalk furcation, probably contributes to the about 12 times longer EOD in the adult.}, language = {en} }