@inproceedings{LauchtBlomeyerElFaddaghetal.2011, author = {Laucht, Manfred and Blomeyer, Dorothea and El-Faddagh, Mahha and Esser, G{\"u}nter and Schmidt, Martin and Banaschewski, Tobias and Becker, Katja}, title = {Are regulatory problems in infancy precursors of ADHD in childhood? a moderating role for the dopamine D4 receptor gene}, series = {Infant mental health journal}, volume = {32}, booktitle = {Infant mental health journal}, number = {3}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0163-9641}, pages = {212 -- 212}, year = {2011}, language = {en} } @article{HolzBoeckerSchlierJennenSteinmetzetal.2018, author = {Holz, Nathalie E. and Boecker-Schlier, Regina and Jennen-Steinmetz, Christine and Hohm, Erika and Buchmann, Arlette F. and Blomeyer, Dorothea and Baumeister, Sarah and Plichta, Michael M. and Esser, G{\"u}nter and Schmidt, Martin and Meyer-Lindenberg, Andreas and Banaschewski, Tobias and Brandeis, Daniel and Laucht, Manfred}, title = {Early maternal care may counteract familial liability for psychopathology in the reward circuitry}, series = {Social Cognitive and Affective Neuroscience}, volume = {13}, journal = {Social Cognitive and Affective Neuroscience}, number = {11}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {1749-5016}, doi = {10.1093/scan/nsy087}, pages = {1191 -- 1201}, year = {2018}, abstract = {Reward processing is altered in various psychopathologies and has been shown to be susceptible to genetic and environmental influences. Here, we examined whether maternal care may buffer familial risk for psychiatric disorders in terms of reward processing. Functional magnetic resonance imaging during a monetary incentive delay task was acquired in participants of an epidemiological cohort study followed since birth (N = 172, 25 years). Early maternal stimulation was assessed during a standardized nursing/playing setting at the age of 3 months. Parental psychiatric disorders (familial risk) during childhood and the participants' previous psychopathology were assessed by diagnostic interview. With high familial risk, higher maternal stimulation was related to increasing activation in the caudate head, the supplementary motor area, the cingulum and the middle frontal gyrus during reward anticipation, with the opposite pattern found in individuals with no familial risk. In contrast, higher maternal stimulation was associated with decreasing caudate head activity during reward delivery and reduced levels of attention deficit hyperactivity disorder (ADHD) in the high-risk group. Decreased caudate head activity during reward anticipation and increased activity during delivery were linked to ADHD. These findings provide evidence of a long-term association of early maternal stimulation on both adult neurobiological systems of reward underlying externalizing behavior and ADHD during development.}, language = {en} } @phdthesis{Schmidt2017, author = {Schmidt, Martin}, title = {Entwicklung eines Verfahrens zur Herstellung von Florfliegenseide}, school = {Universit{\"a}t Potsdam}, pages = {135}, year = {2017}, language = {de} } @article{SchmidtKasparRichter2008, author = {Schmidt, Martin and Kaspar, R{\"u}diger and Richter, Torsten}, title = {Ergebnisse der Tagung des BFA Mykologie (NABU) 2006 in Linowsee bei Rheinsberg/Brandenburg}, editor = {Kummer, Volker}, year = {2008}, language = {de} } @phdthesis{Schmidt2019, author = {Schmidt, Martin}, title = {Fragmentation of landscapes: modelling ecosystem services of transition zones}, doi = {10.25932/publishup-44294}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-442942}, school = {Universit{\"a}t Potsdam}, pages = {XV, 103}, year = {2019}, abstract = {For millennia, humans have affected landscapes all over the world. Due to horizontal expansion, agriculture plays a major role in the process of fragmentation. This process is caused by a substitution of natural habitats by agricultural land leading to agricultural landscapes. These landscapes are characterized by an alternation of agriculture and other land use like forests. In addition, there are landscape elements of natural origin like small water bodies. Areas of different land use are beside each other like patches, or fragments. They are physically distinguishable which makes them look like a patchwork from an aerial perspective. These fragments are each an own ecosystem with conditions and properties that differ from their adjacent fragments. As open systems, they are in exchange of information, matter and energy across their boundaries. These boundary areas are called transition zones. Here, the habitat properties and environmental conditions are altered compared to the interior of the fragments. This changes the abundance and the composition of species in the transition zones, which in turn has a feedback effect on the environmental conditions. The literature mainly offers information and insights on species abundance and composition in forested transition zones. Abiotic effects, the gradual changes in energy and matter, received less attention. In addition, little is known about non-forested transition zones. For example, the effects on agricultural yield in transition zones of an altered microclimate, matter dynamics or different light regimes are hardly researched or understood. The processes in transition zones are closely connected with altered provisioning and regulating ecosystem services. To disentangle the mechanisms and to upscale the effects, models can be used. My thesis provides insights into these topics: literature was reviewed and a conceptual framework for the quantitative description of gradients of matter and energy in transition zones was introduced. The results of measurements of environmental gradients like microclimate, aboveground biomass and soil carbon and nitrogen content are presented that span from within the forest into arable land. Both the measurements and the literature review could not validate a transition zone of 100 m for abiotic effects. Although this value is often reported and used in the literature, it is likely to be smaller. Further, the measurements suggest that on the one hand trees in transition zones are smaller compared to those in the interior of the fragments, while on the other hand less biomass was measured in the arable lands' transition zone. These results support the hypothesis that less carbon is stored in the aboveground biomass in transition zones. The soil at the edge (zero line) between adjacent forest and arable land contains more nitrogen and carbon content compared to the interior of the fragments. One-year measurements in the transition zone also provided evidence that microclimate is different compared to the fragments' interior. To predict the possible yield decreases that transition zones might cause, a modelling approach was developed. Using a small virtual landscape, I modelled the effect of a forest fragment shading the adjacent arable land and the effects of this on yield using the MONICA crop growth model. In the transition zone yield was less compared to the interior due to shading. The results of the simulations were upscaled to the landscape level and exemplarily calculated for the arable land of a whole region in Brandenburg, Germany. The major findings of my thesis are: (1) Transition zones are likely to be much smaller than assumed in the scientific literature; (2) transition zones aren't solely a phenomenon of forested ecosystems, but significantly extend into arable land as well; (3) empirical and modelling results show that transition zones encompass biotic and abiotic changes that are likely to be important to a variety of agricultural landscape ecosystem services.}, language = {en} } @article{LauchtSchmidtEsser2003, author = {Laucht, Manfred and Schmidt, Martin and Esser, G{\"u}nter}, title = {Fr{\"u}hkindliche Regulationsst{\"o}rungen: Vorl{\"a}ufer von Verhaltensst{\"o}rungen des sp{\"a}teren Kindesalters?}, isbn = {3- 456-84036-5}, year = {2003}, language = {de} } @misc{SchmidtJochheimKersebaumetal.2017, author = {Schmidt, Martin and Jochheim, Hubert and Kersebaum, Kurt-Christian and Lischeid, Gunnar and Nendel, Claas}, title = {Gradients of microclimate, carbon and nitrogen in transition zones of fragmented landscapes - a review}, series = {Agricultural and forest meteorology}, volume = {232}, journal = {Agricultural and forest meteorology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0168-1923}, doi = {10.1016/j.agrformet.2016.10.022}, pages = {659 -- 671}, year = {2017}, abstract = {Fragmentation of landscapes creates a transition zone in between natural habitats or different kinds of land use. In forested and agricultural landscapes with transition zones, microclimate and matter cycling are markedly altered. This probably accelerates and is intensified by global warming. However, there is no consensus on defining transition zones and quantifying relevant variables for microclimate and matter cycling across disciplines. This article is an attempt to a) revise definitions and offer a framework for quantitative ecologists, b) review the literature on microclimate and matter cycling in transition zones and c) summarise this information using meta-analysis to better understand bio-geochemical and bio-geophysical processes and their spatial extent in transition zones. We expect altered conditions in soils of transition zones to be 10-20 m with a maximum of 50 m, and 25-50 m for above-ground space with a maximum of 125 m.}, language = {en} } @article{LauchtTreutleinBlomeyeretal.2012, author = {Laucht, Manfred and Treutlein, Jens and Blomeyer, Dorothea and Buchmann, Arlette F. and Schmidt, Martin and Esser, G{\"u}nter and Jennen-Steinmetz, Christine and Reitschelb, Marcel and Banaschewski, Tobias}, title = {Interactive effects of corticotropin-releasing hormone receptor 1 gene and childhood adversity on depressive symptoms in young adults: Findings from a longitudinal study}, year = {2012}, language = {en} } @article{SchmidtLischeidNendel2019, author = {Schmidt, Martin and Lischeid, Gunnar and Nendel, Claas}, title = {Microclimate and matter dynamics in transition zones of forest to arable land}, series = {Agricultural and forest meteorology}, volume = {268}, journal = {Agricultural and forest meteorology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0168-1923}, doi = {10.1016/j.agrformet.2019.01.001}, pages = {1 -- 10}, year = {2019}, abstract = {Human-driven fragmentation of landscapes leads to the formation of transition zones between ecosystems that are characterised by fluxes of matter, energy and information. These transition zones may offer rather inhospitable habitats that could jeopardise biodiversity. On the other hand, transition zones are also reported to be hotspots for biodiversity and even evolutionary processes. The general mechanisms and influence of processes in transition zones are poorly understood. Although heterogeneity and diversity of land use of fragments and the transition zones between them play an important role, most studies only refer to forested transition zones. Often, only an extrapolation of measurements in the different fragments themselves is reported to determine gradients in transition zones. This paper contributes to a quantitative understanding of agricultural landscapes beyond individual ecotopes, and towards connected ecosystem mosaics that may be beneficial for the provision of ecosystem services.}, language = {en} } @article{SchmidtNendelFunketal.2019, author = {Schmidt, Martin and Nendel, Claas and Funk, Roger and Mitchell, Matthew G. E. and Lischeid, Gunnar}, title = {Modeling Yields Response to Shading in the Field-to-Forest Transition Zones in Heterogeneous Landscapes}, series = {Agriculture}, volume = {9}, journal = {Agriculture}, number = {1}, publisher = {MDPI}, address = {Basel}, issn = {2077-0472}, doi = {10.3390/agriculture9010006}, pages = {15}, year = {2019}, abstract = {In crop modeling and yield predictions, the heterogeneity of agricultural landscapes is usually not accounted for. This heterogeneity often arises from landscape elements like forests, hedges, or single trees and shrubs that cast shadows. Shading from forested areas or shrubs has effects on transpiration, temperature, and soil moisture, all of which affect the crop yield in the adjacent arable land. Transitional gradients of solar irradiance can be described as a function of the distance to the zero line (edge), the cardinal direction, and the height of trees. The magnitude of yield reduction in transition zones is highly influenced by solar irradiance-a factor that is not yet implemented in crop growth models on a landscape level. We present a spatially explicit model for shading caused by forested areas, in agricultural landscapes. With increasing distance to forest, solar irradiance and yield increase. Our model predicts that the shading effect from the forested areas occurs up to 15 m from the forest edge, for the simulated wheat yields, and up to 30 m, for simulated maize. Moreover, we estimated the spatial extent of transition zones, to calculate the regional yield reduction caused by shading of the forest edges, which amounted to 5\% to 8\% in an exemplary region.}, language = {en} }