@article{BeckerGeigerDunkeletal.2004, author = {Becker, Dirk and Geiger, D. and Dunkel, M. and Roller, A. and Bertl, Adam and Latz, A. and Carpaneto, Armando and Dietrich, Peter and Roelfsema, M. R. G. and Voelker, C. and Schmidt, D. and M{\"u}ller-R{\"o}ber, Bernd and Czempinski, Katrin and Hedrich, R.}, title = {AtTPK4, an Arabidopsis tandem-pore K+ channel, poised to control the pollen membrane voltage in a pH- and Ca2+- dependent manner}, issn = {0027-8424}, year = {2004}, abstract = {The Arabidopsis tandem-pore K+ (TPK) channels displaying four transmembrane domains and two pore regions share structural homologies with their animal counterparts of the KCNK family. In contrast to the Shaker-like Arabidopsis channels (six transmembrane domains/one pore region), the functional properties and the biological role of plant TPK channels have not been elucidated yet. Here, we show that AtTPK4 (KCO4) localizes to the plasma membrane and is predominantly expressed in pollen. AtTPK4 (KCO4) resembles the electrical properties of a voltage-independent K+ channel after expression in Xenopus oocytes and yeast. Hyperpolarizing as well as depolarizing membrane voltages elicited instantaneous K+ currents, which were blocked by extracellular calcium and cytoplasmic protons. Functional complementation assays using a K+ transport-deficient yeast confirmed the biophysical and pharmacological properties of the AtTPK4 channel. The features of AtTPK4 point toward a role in potassium homeostasis and membrane voltage control of the growing pollen tube. Thus, AtTPK4 represents a member of plant tandem-pore-K+ channels, resembling the characteristics of its animal counterparts as well as plant-specific features with respect to modulation of channel activity by acidosis and calcium}, language = {en} } @article{MuellerRailaAltenkampetal.2012, author = {Mueller, K. and Raila, Jens and Altenkamp, Rainer and Schmidt, D. and Dietrich, R. and Hurtienne, Andrea and Wink, M. and Krone, O. and Brunnberg, Leo and Schweigert, Florian J.}, title = {Concentrations of retinol, 3,4-didehydroretinol, and retinyl esters in plasma of free-ranging birds of prey}, series = {Journal of animal physiology and animal nutrition}, volume = {96}, journal = {Journal of animal physiology and animal nutrition}, number = {6}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0931-2439}, doi = {10.1111/j.1439-0396.2011.01219.x}, pages = {1044 -- 1053}, year = {2012}, abstract = {This study investigated vitamin A compounds in the plasma of healthy free-ranging Central European raptors with different feeding strategies. Plasma samples of nestlings of white-tailed sea eagle [white-tailed sea eagle (WTSE), Haliaeetus albicilla) (n = 32), osprey (Pandion haliaetus) (n = 39), northern goshawk (Accipiter gentilis) (n = 25), common buzzard (Buteo buteo) (n = 31), and honey buzzard (Pernis apivorus) (n = 18) and adults of WTSE (n = 10), osprey (n = 31), and northern goshawk (n = 45) were investigated with reversed-phase-high-performance liquid chromatography (RP-HPLC). In WTSE, northern goshawks and common buzzards retinol were the main plasma component of vitamin A, whilst in ospreys and honey buzzards, 3,4-didehydroretinol predominated. The median of the retinol plasma concentration in the nestlings group ranged from 0.12 to 3.80 mu M and in the adult group from 0.15 to 6.13 mu M. Median plasma concentrations of 3,4-didehydroretinol in nestlings ranged from 0.06 to 3.55 mu M. In adults, northern goshawks had the lowest plasma concentration of 3,4-didehydroretinol followed by WTSE and ospreys. The plasma of all investigated species contained retinyl esters (palmitate, oleate, and stearate). The results show considerable species-specific differences in the vitamin A plasma concentrations that might be caused by different nutrition strategies.}, language = {en} } @article{GonzalezManriqueKuckeinPastorYabaretal.2016, author = {Gonzalez Manrique, Sergio Javier and Kuckein, Christoph and Pastor Yabar, A. and Collados Vera, M. and Denker, Carsten and Fischer, C. E. and G{\"o}m{\"o}ry, P. and Diercke, Andrea and Gonzalez, N. Bello and Schlichenmaier, R. and Balthasar, H. and Berkefeld, T. and Feller, A. and Hoch, S. and Hofmann, A. and Kneer, F. and Lagg, A. and Nicklas, H. and Orozco Suarez, D. and Schmidt, D. and Schmidt, W. and Sigwarth, M. and Sobotka, M. and Solanki, S. K. and Soltau, D. and Staude, J. and Strassmeier, Klaus G. and Verma, Meetu and Volkmer, R. and von der L{\"u}he, O. and Waldmann, T.}, title = {Fitting peculiar spectral profiles in He I 10830 angstrom absorption features}, series = {Astronomische Nachrichten = Astronomical notes}, volume = {337}, journal = {Astronomische Nachrichten = Astronomical notes}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0004-6337}, doi = {10.1002/asna.201512433}, pages = {1057 -- 1063}, year = {2016}, abstract = {The new generation of solar instruments provides better spectral, spatial, and temporal resolution for a better understanding of the physical processes that take place on the Sun. Multiple-component profiles are more commonly observed with these instruments. Particularly, the He i 10830 triplet presents such peculiar spectral profiles, which give information on the velocity and magnetic fine structure of the upper chromosphere. The purpose of this investigation is to describe a technique to efficiently fit the two blended components of the He i 10830 triplet, which are commonly observed when two atmospheric components are located within the same resolution element. The observations used in this study were taken on 2015 April 17 with the very fast spectroscopic mode of the GREGOR Infrared Spectrograph (GRIS) attached to the 1.5-m GREGOR solar telescope, located at the Observatorio del Teide, Tenerife, Spain. We apply a double-Lorentzian fitting technique using Levenberg-Marquardt least-squares minimization. This technique is very simple and much faster than inversion codes. Line-of-sight Doppler velocities can be inferred for a whole map of pixels within just a few minutes. Our results show sub-and supersonic downflow velocities of up to 32 km s(-1) for the fast component in the vicinity of footpoints of filamentary structures. The slow component presents velocities close to rest. (C) 2016 WILEY-VCH Verlag GmbH\& Co. KGaA, Weinheim}, language = {en} } @article{VermaDenkerBoehmetal.2016, author = {Verma, Meetu and Denker, Carsten and B{\"o}hm, F. and Balthasar, H. and Fischer, C. E. and Kuckein, Christoph and Gonzalez, N. Bello and Berkefeld, T. and Collados Vera, M. and Diercke, Andrea and Feller, A. and Gonzalez Manrique, Sergio Javier and Hofmann, A. and Lagg, A. and Nicklas, H. and Orozco Suarez, D. and Pator Yabar, A. and Rezaei, R. and Schlichenmaier, R. and Schmidt, D. and Schmidt, W. and Sigwarth, M. and Sobotka, M. and Solanki, S. K. and Soltau, D. and Staude, J. and Strassmeier, Klaus G. and Volkmer, R. and von der L{\"u}he, O. and Waldmann, T.}, title = {Flow and magnetic field properties in the trailing sunspots of active region NOAA 12396}, series = {Astronomische Nachrichten = Astronomical notes}, volume = {337}, journal = {Astronomische Nachrichten = Astronomical notes}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0004-6337}, doi = {10.1002/asna.201612447}, pages = {1090 -- 1098}, year = {2016}, abstract = {Improved measurements of the photospheric and chromospheric three-dimensional magnetic and flow fields are crucial for a precise determination of the origin and evolution of active regions. We present an illustrative sample of multi-instrument data acquired during a two-week coordinated observing campaign in August 2015 involving, among others, the GREGOR solar telescope (imaging and near-infrared spectroscopy) and the space missions Solar Dynamics Observatory (SDO) and Interface Region Imaging Spectrograph (IRIS). The observations focused on the trailing part of active region NOAA 12396 with complex polarity inversion lines and strong intrusions of opposite polarity flux. The GREGOR Infrared Spectrograph (GRIS) provided Stokes IQUV spectral profiles in the photospheric Si i.1082.7 nm line, the chromospheric He I lambda 1083.0 nm triplet, and the photospheric Ca I lambda 1083.9 nm line. Carefully calibrated GRIS scans of the active region provided maps of Doppler velocity and magnetic field at different atmospheric heights. We compare quick-look maps with those obtained with the " Stokes Inversions based on Response functions" (SIR) code, which furnishes deeper insight into the magnetic properties of the region. We find supporting evidence that newly emerging flux and intruding opposite polarity flux are hampering the formation of penumbrae, i.e., a penumbra fully surrounding a sunspot is only expected after cessation of flux emergence in proximity to the sunspots. (C) 2016 WILEY-VCH Verlag GmbH\& Co.KGaA, Weinheim}, language = {en} } @article{VermaDenkerBalthasaretal.2016, author = {Verma, Meetu and Denker, Carsten and Balthasar, H. and Kuckein, Christoph and Gonz{\´a}lez Manrique, Sergio Javier and Sobotka, M. and Gonzalez, N. Bello and Hoch, S. and Diercke, Andrea and Kummerow, Philipp and Berkefeld, T. and Collados Vera, M. and Feller, A. and Hofmann, A. and Kneer, F. and Lagg, A. and L{\"o}hner-B{\"o}ttcher, J. and Nicklas, H. and Pastor Yabar, A. and Schlichenmaier, R. and Schmidt, D. and Schmidt, W. and Schubert, M. and Sigwarth, M. and Solanki, S. K. and Soltau, D. and Staude, J. and Strassmeier, Klaus G. and Volkmer, R. and von der L{\"u}he, O. and Waldmann, T.}, title = {Horizontal flow fields in and around a small active region The transition period between flux emergence and decay}, series = {Polymers}, volume = {596}, journal = {Polymers}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201628380}, pages = {12}, year = {2016}, abstract = {Context. The solar magnetic field is responsible for all aspects of solar activity. Thus, emergence of magnetic flux at the surface is the first manifestation of the ensuing solar activity. Aims. Combining high-resolution and synoptic observations aims to provide a comprehensive description of flux emergence at photospheric level and of the growth process that eventually leads to a mature active region. Methods. The small active region NOAA 12118 emerged on 2014 July 17 and was observed one day later with the 1.5-m GREGOR solar telescope on 2014 July 18. High-resolution time-series of blue continuum and G-band images acquired in the blue imaging channel (BIC) of the GREGOR Fabry-Perot Interferometer (GFPI) were complemented by synoptic line-of-sight magnetograms and continuum images obtained with the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO). Horizontal proper motions and horizontal plasma velocities were computed with local correlation tracking (LCT) and the differential affine velocity estimator (DAVE), respectively. Morphological image processing was employed to measure the photometric and magnetic area, magnetic flux, and the separation profile of the emerging flux region during its evolution. Results. The computed growth rates for photometric area, magnetic area, and magnetic flux are about twice as high as the respective decay rates. The space-time diagram using HMI magnetograms of five days provides a comprehensive view of growth and decay. It traces a leaf-like structure, which is determined by the initial separation of the two polarities, a rapid expansion phase, a time when the spread stalls, and a period when the region slowly shrinks again. The separation rate of 0.26 km s(-1) is highest in the initial stage, and it decreases when the separation comes to a halt. Horizontal plasma velocities computed at four evolutionary stages indicate a changing pattern of inflows. In LCT maps we find persistent flow patterns such as outward motions in the outer part of the two major pores, a diverging feature near the trailing pore marking the site of upwelling plasma and flux emergence, and low velocities in the interior of dark pores. We detected many elongated rapidly expanding granules between the two major polarities, with dimensions twice as large as the normal granules.}, language = {en} } @article{MartinezGonzalezPastorYabarLaggetal.2016, author = {Martinez Gonzalez, M. J. and Pastor Yabar, A. and Lagg, A. and Asensio Ramos, A. and Collados Vera, M. and Solanki, S. K. and Balthasar, H. and Berkefeld, T. and Denker, Carsten and Doerr, H. P. and Feller, A. and Franz, M. and Gonz{\´a}lez Manrique, Sergio Javier and Hofmann, A. and Kneer, F. and Kuckein, Christoph and Louis, R. and von der L{\"u}he, O. and Nicklas, H. and Orozco, D. and Rezaei, R. and Schlichenmaier, R. and Schmidt, D. and Schmidt, W. and Sigwarth, M. and Sobotka, M. and Soltau, D. and Staude, J. and Strassmeier, Klaus G. and Verma, Meetu and Waldman, T. and Volkmer, R.}, title = {Inference of magnetic fields in the very quiet Sun}, series = {Journal of geophysical research : Earth surface}, volume = {596}, journal = {Journal of geophysical research : Earth surface}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201628449}, pages = {11}, year = {2016}, abstract = {Context. Over the past 20 yr, the quietest areas of the solar surface have revealed a weak but extremely dynamic magnetism occurring at small scales (<500 km), which may provide an important contribution to the dynamics and energetics of the outer layers of the atmosphere. Understanding this magnetism requires the inference of physical quantities from high-sensitivity spectro-polarimetric data with high spatio-temporal resolution. Aims. We present high-precision spectro-polarimetric data with high spatial resolution (0.4") of the very quiet Sun at 1.56 mu m obtained with the GREGOR telescope to shed some light on this complex magnetism. Methods. We used inversion techniques in two main approaches. First, we assumed that the observed profiles can be reproduced with a constant magnetic field atmosphere embedded in a field-free medium. Second, we assumed that the resolution element has a substructure with either two constant magnetic atmospheres or a single magnetic atmosphere with gradients of the physical quantities along the optical depth, both coexisting with a global stray-light component. Results. Half of our observed quiet-Sun region is better explained by magnetic substructure within the resolution element. However, we cannot distinguish whether this substructure comes from gradients of the physical parameters along the line of sight or from horizontal gradients (across the surface). In these pixels, a model with two magnetic components is preferred, and we find two distinct magnetic field populations. The population with the larger filling factor has very weak (similar to 150 G) horizontal fields similar to those obtained in previous works. We demonstrate that the field vector of this population is not constrained by the observations, given the spatial resolution and polarimetric accuracy of our data. The topology of the other component with the smaller filling factor is constrained by the observations for field strengths above 250 G: we infer hG fields with inclinations and azimuth values compatible with an isotropic distribution. The filling factors are typically below 30\%. We also find that the flux of the two polarities is not balanced. From the other half of the observed quiet-Sun area similar to 50\% are two-lobed Stokes V profiles, meaning that 23\% of the field of view can be adequately explained with a single constant magnetic field embedded in a non-magnetic atmosphere. The magnetic field vector and filling factor are reliable inferred in only 50\% based on the regular profiles. Therefore, 12\% of the field of view harbour hG fields with filling factors typically below 30\%. At our present spatial resolution, 70\% of the pixels apparently are non-magnetised.}, language = {en} } @article{BalthasarGoemoeryGonzalezManriqueetal.2016, author = {Balthasar, H. and G{\"o}m{\"o}ry, P. and Gonz{\´a}lez Manrique, Sergio Javier and Kuckein, Christoph and Kavka, J. and Kucera, A. and Schwartz, P. and Vaskova, R. and Berkefeld, T. and Collados Vera, M. and Denker, Carsten and Feller, A. and Hofmann, A. and Lagg, A. and Nicklas, H. and Suarez, D. and Pastor Yabar, A. and Rezaei, R. and Schlichenmaier, R. and Schmidt, D. and Schmidt, W. and Sigwarth, M. and Sobotka, M. and Solanki, S. K. and Soltau, D. and Staude, J. and Strassmeier, Klaus G. and Volkmer, R. and von der L{\"u}he, O. and Waldmann, T.}, title = {Spectropolarimetric observations of an arch filament system with the GREGOR solar telescope}, series = {Astronomische Nachrichten = Astronomical notes}, volume = {337}, journal = {Astronomische Nachrichten = Astronomical notes}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0004-6337}, doi = {10.1002/asna.201612432}, pages = {1050 -- 1056}, year = {2016}, abstract = {Arch filament systems occur in active sunspot groups, where a fibril structure connects areas of opposite magnetic polarity, in contrast to active region filaments that follow the polarity inversion line. We used the GREGOR Infrared Spectrograph (GRIS) to obtain the full Stokes vector in the spectral lines SiI lambda 1082.7 nm, He I lambda 1083.0 nm, and Ca I lambda 1083.9 nm. We focus on the near-infrared calcium line to investigate the photospheric magnetic field and velocities, and use the line core intensities and velocities of the helium line to study the chromospheric plasma. The individual fibrils of the arch filament system connect the sunspot with patches of magnetic polarity opposite to that of the spot. These patches do not necessarily coincide with pores, where the magnetic field is strongest. Instead, areas are preferred not far from the polarity inversion line. These areas exhibit photospheric downflows of moderate velocity, but significantly higher downflows of up to 30 km s(-1) in the chromospheric helium line. Our findings can be explained with new emerging flux where the matter flows downward along the field lines of rising flux tubes, in agreement with earlier results. (C) 2016 WILEY-VCH Verlag GmbH\& Co. KGaA, Weinheim}, language = {en} }