@article{RottlerVormoorFranckeetal.2021, author = {Rottler, Erwin and Vormoor, Klaus Josef and Francke, Till and Warscher, Michael and Strasser, Ulrich and Bronstert, Axel}, title = {Elevation-dependent compensation effects in snowmelt in the Rhine River Basin upstream gauge Basel}, series = {Hydrology research : an international journal / Nordic Association of Hydrology ; British Hydrological Society}, volume = {52}, journal = {Hydrology research : an international journal / Nordic Association of Hydrology ; British Hydrological Society}, number = {2}, publisher = {IWA Publ.}, address = {London}, issn = {2224-7955}, doi = {10.2166/nh.2021.092}, pages = {536 -- 557}, year = {2021}, abstract = {In snow-dominated river basins, floods often occur during early summer, when snowmelt-induced runoff superimposes with rainfall-induced runoff. An earlier onset of seasonal snowmelt as a consequence of a warming climate is often expected to shift snowmelt contribution to river runoff and potential flooding to an earlier date. Against this background, we assess the impact of rising temperatures on seasonal snowpacks and quantify changes in timing, magnitude and elevation of snowmelt. We analyse in situ snow measurements, conduct snow simulations and examine changes in river runoff at key gauging stations. With regard to snowmelt, we detect a threefold effect of rising temperatures: snowmelt becomes weaker, occurs earlier and forms at higher elevations. Due to the wide range of elevations in the catchment, snowmelt does not occur simultaneously at all elevations. Results indicate that elevation bands melt together in blocks. We hypothesise that in a warmer world with similar sequences of weather conditions, snowmelt is moved upward to higher elevation. The movement upward the elevation range makes snowmelt in individual elevation bands occur earlier, although the timing of the snowmelt-induced runoff stays the same. Meltwater from higher elevations, at least partly, replaces meltwater from elevations below.}, language = {en} } @article{RottlerKormannFranckeetal.2018, author = {Rottler, Erwin and Kormann, Christoph Martin and Francke, Till and Bronstert, Axel}, title = {Elevation-dependent warming in the Swiss Alps 1981-2017}, series = {International journal of climatology : a journal of the Royal Meteorological Society}, volume = {39}, journal = {International journal of climatology : a journal of the Royal Meteorological Society}, number = {5}, publisher = {Wiley}, address = {Hoboken}, issn = {0899-8418}, doi = {10.1002/joc.5970}, pages = {2556 -- 2568}, year = {2018}, abstract = {Due to the environmental and socio-economic importance of mountainous regions, it is crucial to understand causes and consequences of climatic changes in those sensitive landscapes. Daily resolution alpine climate data from Switzerland covering an elevation range of over 3,000m between 1981 and 2017 have been analysed using highly resolved trends in order to gain a better understanding of features, forcings and feedbacks related to temperature changes in mountainous regions. Particular focus is put on processes related to changes in weather types, incoming solar radiation, cloud cover, air humidity, snow/ice and elevation dependency of temperature trends. Temperature trends in Switzerland differ depending on the time of the year, day and elevation. Warming is strongest during spring and early summer with enhanced warming of daytime maximum temperatures. Elevation-based differences in temperature trends occur during autumn and winter with stronger warming at lower elevations. We attribute this elevation-dependent temperature signal mainly to elevation-based differences in trends of incoming solar radiation and elevation-sensitive responses to changes in frequencies of weather types. In general, effects of varying frequencies of weather types overlap with trends caused by transmission changes in short- and long-wave radiation. Temperature signals arising from snow/ice albedo feedback mechanisms are probably small and might be hidden by other effects.}, language = {en} } @article{RottlerVormoorFranckeetal.2021, author = {Rottler, Erwin and Vormoor, Klaus Josef and Francke, Till and Bronstert, Axel}, title = {Hydro Explorer}, series = {River research and applications}, volume = {37}, journal = {River research and applications}, number = {4}, publisher = {Wiley}, address = {New York}, issn = {1535-1459}, doi = {10.1002/rra.3772}, pages = {544 -- 554}, year = {2021}, abstract = {Climatic changes and anthropogenic modifications of the river basin or river network have the potential to fundamentally alter river runoff. In the framework of this study, we aim to analyze and present historic changes in runoff timing and runoff seasonality observed at river gauges all over the world. In this regard, we develop the Hydro Explorer, an interactive web app, which enables the investigation of >7,000 daily resolution discharge time series from the Global Runoff Data Centre (GRDC). The interactive nature of the developed web app allows for a quick comparison of gauges, regions, methods, and time frames. We illustrate the available analytical tools by investigating changes in runoff timing and runoff seasonality in the Rhine River Basin. Since we provide the source code of the application, existing analytical approaches can be modified, new methods added, and the tool framework can be re-used to visualize other data sets.}, language = {en} } @article{RezaRottlerHerklotzetal.2015, author = {Reza, M. Toufiq and Rottler, Erwin and Herklotz, Laureen and Wirth, Benjamin}, title = {Hydrothermal carbonization (HTC) of wheat straw: Influence of feedwater pH prepared by acetic acid and potassium hydroxide}, series = {Bioresource technology : biomass, bioenergy, biowastes, conversion technologies, biotransformation, production technologies}, volume = {182}, journal = {Bioresource technology : biomass, bioenergy, biowastes, conversion technologies, biotransformation, production technologies}, publisher = {Elsevier}, address = {Oxford}, issn = {0960-8524}, doi = {10.1016/j.biortech.2015.02.024}, pages = {336 -- 344}, year = {2015}, abstract = {In this study, influence of feedwater pH (2-12) was studied for hydrothermal carbonization (HTC) of wheat straw at 200 and 260 degrees C. Acetic acid and KOH were used as acidic and basic medium, respectively. Hydrochars were characterized by elemental and fiber analyses, SEM, surface area, pore volume and size, and ATR-FTIR, while HTC process liquids were analyzed by HPLC and GC. Both hydrochar and HTC process liquid qualities vary with feedwater pH. At acidic pH, cellulose and elemental carbon increase in hydrochar, while hemicellulose and pseudo-lignin decrease. Hydrochars produced at pH 2 feedwater has 2.7 times larger surface area than that produced at pH 12. It also has the largest pore volume (1.1 x 10(-1) ml g(-1)) and pore size (20.2 nm). Organic acids were increasing, while sugars were decreasing in case of basic feedwater, however, phenolic compounds were present only at 260 degrees C and their concentrations were increasing in basic feedwater. (C) 2015 Elsevier Ltd. All rights reserved.}, language = {en} } @misc{Rottler2017, type = {Master Thesis}, author = {Rottler, Erwin}, title = {Implementation of a snow routine into the hydrological model WASA-SED and its validation in a mountainous catchment}, doi = {10.25932/publishup-50496}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-504963}, school = {Universit{\"a}t Potsdam}, pages = {IV, 64}, year = {2017}, abstract = {In many regions of the world, snow accumulation and melt constitute important components of the hydrologic cycle. With the objective to improve model performance of the hydrological model WASA-SED (Water Availability in Semi-Arid environments - SEDiments) in catchments affected by snow and ice, a physically-based snow routine has been implemented into the model. The snow routine bases on the energy-balance method of the ECHSE (Eco-hydrological Simulation Environment) software. A first test application has been conducted in two sub-basins of the Is{\´a}bena river catchment (Central Spanish Pre-Pyrenees). Results were validated using satellite-derived snow cover data. Furthermore, a rainfall gauge correction algorithm to restore the liquid precipitation signal of measurements affected by solid precipitation was applied. The snow module proved to be able to capture the dynamics of the snow cover forming during the cold months of the year. The temporary storage of water in the snow cover is able to improve simulations of river discharge. General patterns of the temporal evolution of observed and simulated snow cover fractions coincide. The work conducted only represents a first step in the process of implementation and evaluation of a physically-based snow routine into WASA-SED. Future work is necessary to further improve and test the snow routine and to resolve difficulties that occurred during model applications in the catchment.}, language = {en} } @article{RottlerFranckeBuergeretal.2020, author = {Rottler, Erwin and Francke, Till and B{\"u}rger, Gerd and Bronstert, Axel}, title = {Long-term changes in central European river discharge for 1869-2016}, series = {Hydrology and Earth System Sciences}, volume = {24}, journal = {Hydrology and Earth System Sciences}, number = {4}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1027-5606}, doi = {10.5194/hess-24-1721-2020}, pages = {1721 -- 1740}, year = {2020}, abstract = {Recent climatic changes have the potential to severely alter river runoff, particularly in snow-dominated river basins. Effects of changing snow covers superimpose with changes in precipitation and anthropogenic modifications of the watershed and river network. In the attempt to identify and disentangle long-term effects of different mechanisms, we employ a set of analytical tools to extract long-term changes in river runoff at high resolution. We combine quantile sampling with moving average trend statistics and empirical mode decomposition and apply these tools to discharge data recorded along rivers with nival, pluvial and mixed flow regimes as well as temperature and precipitation data covering the time frame 1869-2016. With a focus on central Europe, we analyse the long-term impact of snow cover and precipitation changes along with their interaction with reservoir constructions. Our results show that runoff seasonality of snow-dominated rivers decreases. Runoff increases in winter and spring, while discharge decreases in summer and at the beginning of autumn. We attribute this redistribution of annual flow mainly to reservoir constructions in the Alpine ridge. During the course of the last century, large fractions of the Alpine rivers were dammed to produce hydropower. In recent decades, runoff changes induced by reservoir constructions seem to overlap with changes in snow cover. We suggest that Alpine signals propagate downstream and affect runoff far outside the Alpine area in river segments with mixed flow regimes. Furthermore, our results hint at more (intense) rain-fall in recent decades. Detected increases in high discharge can be traced back to corresponding changes in precipitation.}, language = {en} } @misc{RottlerFranckeBuergeretal.2020, author = {Rottler, Erwin and Francke, Till and B{\"u}rger, Gerd and Bronstert, Axel}, title = {Long-term changes in central European river discharge for 1869-2016}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {4}, issn = {1866-8372}, doi = {10.25932/publishup-51776}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-517763}, pages = {22}, year = {2020}, abstract = {Recent climatic changes have the potential to severely alter river runoff, particularly in snow-dominated river basins. Effects of changing snow covers superimpose with changes in precipitation and anthropogenic modifications of the watershed and river network. In the attempt to identify and disentangle long-term effects of different mechanisms, we employ a set of analytical tools to extract long-term changes in river runoff at high resolution. We combine quantile sampling with moving average trend statistics and empirical mode decomposition and apply these tools to discharge data recorded along rivers with nival, pluvial and mixed flow regimes as well as temperature and precipitation data covering the time frame 1869-2016. With a focus on central Europe, we analyse the long-term impact of snow cover and precipitation changes along with their interaction with reservoir constructions. Our results show that runoff seasonality of snow-dominated rivers decreases. Runoff increases in winter and spring, while discharge decreases in summer and at the beginning of autumn. We attribute this redistribution of annual flow mainly to reservoir constructions in the Alpine ridge. During the course of the last century, large fractions of the Alpine rivers were dammed to produce hydropower. In recent decades, runoff changes induced by reservoir constructions seem to overlap with changes in snow cover. We suggest that Alpine signals propagate downstream and affect runoff far outside the Alpine area in river segments with mixed flow regimes. Furthermore, our results hint at more (intense) rain-fall in recent decades. Detected increases in high discharge can be traced back to corresponding changes in precipitation.}, language = {en} } @article{RezaRottlerToelleetal.2015, author = {Reza, M. Toufiq and Rottler, Erwin and T{\"o}lle, Rainer and Werner, Maja and Ramm, Patrice and Mumme, Jan}, title = {Production, characterization, and biogas application of magnetic hydrochar from cellulose}, series = {Bioresource technology : biomass, bioenergy, biowastes, conversion technologies, biotransformation, production technologies}, volume = {186}, journal = {Bioresource technology : biomass, bioenergy, biowastes, conversion technologies, biotransformation, production technologies}, publisher = {Elsevier}, address = {Oxford}, issn = {0960-8524}, doi = {10.1016/j.biortech.2015.03.044}, pages = {34 -- 43}, year = {2015}, abstract = {Hydrothermal carbonization (HTC) produces carbon-rich nano-micro size particles. In this study, magnetic hydrochar (MHC) was prepared from model compound cellulose by simply adding ferrites during HTC. The effects of ferrites on HTC were evaluated by characterizing solid MHC and corresponding process liquid. Additionally, magnetic stability of MHC was tested by magnetic susceptibility method. Finally, MHC was used as support media for anaerobic films in anaerobic digestion (AD). Ash-free mass yield was around 50\% less in MHC than hydrochar produced without ferrites at any certain HTC reaction condition, where organic part of MHC is mainly carbon. In fact, amorphous hydrochar was growing on the surface of inorganic ferrites. MHC maintained magnetic susceptibility regardless of reaction time at reaction temperature 250 degrees C. Pronounced inhibitory effects of magnetic hydrochar occurred during start-up of AD but diminished with prolong AD times. Visible biofilms were observed on the MHC by laser scanning microscope after AD. (C) 2015 Elsevier Ltd. All rights reserved.}, language = {en} } @misc{RottlerBronstertBuergeretal.2021, author = {Rottler, Erwin and Bronstert, Axel and B{\"u}rger, Gerd and Rakovec, Oldrich}, title = {Projected changes in Rhine River flood seasonality under global warming}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, issn = {1866-8372}, doi = {10.25932/publishup-52296}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-522962}, pages = {21}, year = {2021}, abstract = {Climatic change alters the frequency and intensity of natural hazards. In order to assess potential future changes in flood seasonality in the Rhine River Basin, we analyse changes in streamflow, snowmelt, precipitation, and evapotranspiration at 1.5, 2.0 and 3.0 ◦C global warming levels. The mesoscale Hydrological Model (mHM) forced with an ensemble of climate projection scenarios (five general circulation models under three representative concentration pathways) is used to simulate the present and future climate conditions of both, pluvial and nival hydrological regimes. Our results indicate that the interplay between changes in snowmelt- and rainfall-driven runoff is crucial to understand changes in streamflow maxima in the Rhine River. Climate projections suggest that future changes in flood characteristics in the entire Rhine River are controlled by both, more intense precipitation events and diminishing snow packs. The nature of this interplay defines the type of change in runoff peaks. On the sub-basin level (the Moselle River), more intense rainfall during winter is mostly counterbalanced by reduced snowmelt contribution to the streamflow. In the High Rhine (gauge at Basel), the strongest increases in streamflow maxima show up during winter, when strong increases in liquid precipitation intensity encounter almost unchanged snowmelt-driven runoff. The analysis of snowmelt events suggests that at no point in time during the snowmelt season, a warming climate results in an increase in the risk of snowmelt-driven flooding. We do not find indications of a transient merging of pluvial and nival floods due to climate warming.}, language = {en} } @article{RottlerBronstertBuergeretal.2021, author = {Rottler, Erwin and Bronstert, Axel and B{\"u}rger, Gerd and Rakovec, Oldrich}, title = {Projected changes in Rhine River flood seasonality under global warming}, series = {Hydrology and earth system sciences : HESS / European Geosciences Union}, volume = {25}, journal = {Hydrology and earth system sciences : HESS / European Geosciences Union}, number = {5}, publisher = {Copernicus Publications}, address = {G{\"o}ttingen}, issn = {1607-7938}, doi = {10.5194/hess-25-2353-2021}, pages = {2353 -- 2371}, year = {2021}, abstract = {Climatic change alters the frequency and intensity of natural hazards. In order to assess potential future changes in flood seasonality in the Rhine River Basin, we analyse changes in streamflow, snowmelt, precipitation, and evapotranspiration at 1.5, 2.0 and 3.0 ◦C global warming levels. The mesoscale Hydrological Model (mHM) forced with an ensemble of climate projection scenarios (five general circulation models under three representative concentration pathways) is used to simulate the present and future climate conditions of both, pluvial and nival hydrological regimes. Our results indicate that the interplay between changes in snowmelt- and rainfall-driven runoff is crucial to understand changes in streamflow maxima in the Rhine River. Climate projections suggest that future changes in flood characteristics in the entire Rhine River are controlled by both, more intense precipitation events and diminishing snow packs. The nature of this interplay defines the type of change in runoff peaks. On the sub-basin level (the Moselle River), more intense rainfall during winter is mostly counterbalanced by reduced snowmelt contribution to the streamflow. In the High Rhine (gauge at Basel), the strongest increases in streamflow maxima show up during winter, when strong increases in liquid precipitation intensity encounter almost unchanged snowmelt-driven runoff. The analysis of snowmelt events suggests that at no point in time during the snowmelt season, a warming climate results in an increase in the risk of snowmelt-driven flooding. We do not find indications of a transient merging of pluvial and nival floods due to climate warming.}, language = {en} }