@phdthesis{Roland2017, author = {Roland, Steffen}, title = {Charge carrier recombination and open circuit voltage in organic solar cells}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-397721}, school = {Universit{\"a}t Potsdam}, pages = {VI, 145}, year = {2017}, abstract = {Tremendous progress in the development of thin film solar cell techniques has been made over the last decade. The field of organic solar cells is constantly developing, new material classes like Perowskite solar cells are emerging and different types of hybrid organic/inorganic material combinations are being investigated for their physical properties and their applicability in thin film electronics. Besides typical single-junction architectures for solar cells, multi-junction concepts are also being investigated as they enable the overcoming of theoretical limitations of a single-junction. In multi-junction devices each sub-cell operates in different wavelength regimes and should exhibit optimized band-gap energies. It is exactly this tunability of the band-gap energy that renders organic solar cell materials interesting candidates for multi-junction applications. Nevertheless, only few attempts have been made to combine inorganic and organic solar cells in series connected multi-junction architectures. Even though a great diversity of organic solar cells exists nowadays, their open circuit voltage is usually low compared to the band-gap of the active layer. Hence, organic low band-gap solar cells in particular show low open circuit voltages and the key factors that determine the voltage losses are not yet fully understood. Besides open circuit voltage losses the recombination of charges in organic solar cells is also a prevailing research topic, especially with respect to the influence of trap states. The exploratory focus of this work is therefore set, on the one hand, on the development of hybrid organic/inorganic multi-junctions and, on the other hand, on gaining a deeper understanding of the open circuit voltage and the recombination processes of organic solar cells. In the first part of this thesis, the development of a hybrid organic/inorganic triple-junction will be discussed which showed at that time (Jan. 2015) a record power conversion efficiency of 11.7\%. The inorganic sub-cells of these devices consist of hydrogenated amorphous silicon and were delivered by the Competence Center Thin-Film and Nanotechnology for Photovoltaics in Berlin. Different recombination contacts and organic sub-cells were tested in conjunction with these inorganic sub-cells on the basis of optical modeling predictions for the optimal layer thicknesses to finally reach record efficiencies for this type of solar cells. In the second part, organic model systems will be investigated to gain a better understanding of the fundamental loss mechanisms that limit the open circuit voltage of organic solar cells. First, bilayer systems with different orientation of the donor and acceptor molecules were investigated to study the influence of the donor/acceptor orientation on non-radiative voltage loss. Secondly, three different bulk heterojunction solar cells all comprising the same amount of fluorination and the same polymer backbone in the donor component were examined to study the influence of long range electrostatics on the open circuit voltage. Thirdly, the device performance of two bulk heterojunction solar cells was compared which consisted of the same donor polymer but used different fullerene acceptor molecules. By this means, the influence of changing the energetics of the acceptor component on the open circuit voltage was investigated and a full analysis of the charge carrier dynamics was presented to unravel the reasons for the worse performance of the solar cell with the higher open circuit voltage. In the third part, a new recombination model for organic solar cells will be introduced and its applicability shown for a typical low band-gap cell. This model sheds new light on the recombination process in organic solar cells in a broader context as it re-evaluates the recombination pathway of charge carriers in devices which show the presence of trap states. Thereby it addresses a current research topic and helps to resolve alleged discrepancies which can arise from the interpretation of data derived by different measurement techniques.}, language = {en} } @article{RolandYanZhangetal.2017, author = {Roland, Steffen and Yan, Liang and Zhang, Qianqian and Jiao, Xuechen and Hunt, Adrian and Ghasemi, Masoud and Ade, Harald and You, Wei and Neher, Dieter}, title = {Charge Generation and Mobility-Limited Performance of Bulk Heterojunction Solar Cells with a Higher Adduct Fullerene}, series = {The journal of physical chemistry : C, Nanomaterials and interfaces}, volume = {121}, journal = {The journal of physical chemistry : C, Nanomaterials and interfaces}, publisher = {American Chemical Society}, address = {Washington}, issn = {1932-7447}, doi = {10.1021/acs.jpcc.7b02288}, pages = {10305 -- 10316}, year = {2017}, abstract = {Alternative electron acceptors are being actively explored in order to advance the development of bulk-heterojunction (BHJ) organic solar cells (OSCs). The indene-C-60 bisadduct (ICBA) has been regarded as a promising candidate, as it provides high open-circuit voltage in BHJ solar cells; however, the photovoltaic performance of such ICBA-based devices is often inferior when compared to cells with the omnipresent PCBM electron acceptor. Here, by pairing the high performance polymer (FTAZ) as the donor with either PCBM or ICBA as the acceptor, we explore the physical mechanism behind the reduced performance of the ICBA-based device. Time delayed collection field (TDCF) experiments reveal reduced, yet field-independent free charge generation in the FTAZ:ICBA system, explaining the overall lower photocurrent in its cells. Through the analysis of the photoluminescence, photogeneration, and electroluminescence, we find that the lower generation efficiency is neither caused by inefficient exciton splitting, nor do we find evidence for significant energy back-transfer from the CT state to singlet excitons. In fact, the increase in open circuit voltage when replacing PCBM by ICBA is entirely caused by the increase in the CT energy, related to the shift in the LUMO energy, while changes in the radiative and nonradiative recombination losses are nearly absent. On the other hand, space charge limited current (SCLC) and bias-assisted charge extraction (BACE) measurements consistently reveal a severely lower electron mobilitiy in the FTAZ:ICBA blend. Studies of the blends with resonant soft X-ray scattering (R-SoXS), grazing incident wide-angle X-ray scattering (GIWAXS), and scanning transmission X-ray microscopy (STXM) reveal very little differences in the mesoscopic morphology but significantly less nanoscale molecular ordering of the fullerene domains in the ICBA based blends, which we propose as the main cause for the lower generation efficiency and smaller electron mobility. Calculations of the JV curves with an analytical model, using measured values, show good agreement with the experimentally determined JV characteristics, proving that these devices suffer from slow carrier extraction, resulting in significant bimolecular recombination losses. Therefore, this study highlights the importance of high charge carrier mobility for newly synthesized acceptor materials, in addition to having suitable energy levels.}, language = {en} } @article{BartesaghiPerezKniepertetal.2015, author = {Bartesaghi, Davide and Perez, Irene del Carmen and Kniepert, Juliane and Roland, Steffen and Turbiez, Mathieu and Neher, Dieter and Koster, L. Jan Anton}, title = {Competition between recombination and extraction of free charges determines the fill factor of organic solar cells}, series = {Nature Communications}, volume = {6}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/ncomms8083}, pages = {10}, year = {2015}, abstract = {Among the parameters that characterize a solar cell and define its power-conversion efficiency, the fill factor is the least well understood, making targeted improvements difficult. Here we quantify the competition between charge extraction and recombination by using a single parameter theta, and we demonstrate that this parameter is directly related to the fill factor of many different bulk-heterojunction solar cells. Our finding is supported by experimental measurements on 15 different donor: acceptor combinations, as well as by drift-diffusion simulations of organic solar cells in which charge-carrier mobilities, recombination rate, light intensity, energy levels and active-layer thickness are all varied over wide ranges to reproduce typical experimental conditions. The results unify the fill factors of several very different donor: acceptor combinations and give insight into why fill factors change so much with thickness, light intensity and materials properties. To achieve fill factors larger than 0.8 requires further improvements in charge transport while reducing recombination.}, language = {en} } @article{SchubertCollinsMangoldetal.2014, author = {Schubert, Marcel and Collins, Brian A. and Mangold, Hannah and Howard, Ian A. and Schindler, Wolfram and Vandewal, Koen and Roland, Steffen and Behrends, Jan and Kraffert, Felix and Steyrleuthner, Robert and Chen, Zhihua and Fostiropoulos, Konstantinos and Bittl, Robert and Salleo, Alberto and Facchetti, Antonio and Laquai, Frederic and Ade, Harald W. and Neher, Dieter}, title = {Correlated donor/acceptor crystal orientation controls photocurrent generation in all-polymer solar cells}, series = {Advanced functional materials}, volume = {24}, journal = {Advanced functional materials}, number = {26}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1616-301X}, doi = {10.1002/adfm.201304216}, pages = {4068 -- 4081}, year = {2014}, abstract = {New polymers with high electron mobilities have spurred research in organic solar cells using polymeric rather than fullerene acceptors due to their potential of increased diversity, stability, and scalability. However, all-polymer solar cells have struggled to keep up with the steadily increasing power conversion efficiency of polymer: fullerene cells. The lack of knowledge about the dominant recombination process as well as the missing concluding picture on the role of the semi-crystalline microstructure of conjugated polymers in the free charge carrier generation process impede a systematic optimization of all-polymer solar cells. These issues are examined by combining structural and photo-physical characterization on a series of poly(3-hexylthiophene) (donor) and P(NDI2OD-T2) (acceptor) blend devices. These experiments reveal that geminate recombination is the major loss channel for photo-excited charge carriers. Advanced X-ray and electron-based studies reveal the effect of chloronaphthalene co-solvent in reducing domain size, altering domain purity, and reorienting the acceptor polymer crystals to be coincident with those of the donor. This reorientation correlates well with the increased photocurrent from these devices. Thus, effi cient split-up of geminate pairs at polymer/polymer interfaces may necessitate correlated donor/acceptor crystal orientation, which represents an additional requirement compared to the isotropic fullerene acceptors.}, language = {en} } @article{GehrigRolandHowardetal.2014, author = {Gehrig, Dominik W. and Roland, Steffen and Howard, Ian A. and Kamm, Valentin and Mangold, Hannah and Neher, Dieter and Laquai, Frederic}, title = {Efficiency-limiting processes in low-bandgap polymer:Perylene diimide photovoltaic blends}, series = {The journal of physical chemistry : C, Nanomaterials and interfaces}, volume = {118}, journal = {The journal of physical chemistry : C, Nanomaterials and interfaces}, number = {35}, publisher = {American Chemical Society}, address = {Washington}, issn = {1932-7447}, doi = {10.1021/jp503366m}, pages = {20077 -- 20085}, year = {2014}, abstract = {The charge generation and recombination processes following photo-excitation of a low-bandgap polymer:perylene diimide photovoltaic blend are investigated by transient absorption pump-probe spectroscopy covering a dynamic range from femto-to microseconds to get insight into the efficiency-limiting photophysical processes. The several tens of picoseconds, and its efficiency is only half of that in a polymer:fullerene photoinduced electron transfer from the polymer to the perylene acceptor takes up to blend. This reduces the short-circuit current. Time-delayed collection field experiments reveal that the subsequent charge separation is strongly field-dependent, limiting the fill factor and lowering the short-circuit current in polymer:PDI devices. Upon excitation of the acceptor in the low-bandgap polymer blend, the PDI exciton undergoes charge transfer on a time scale of several tens of picoseconds. However, a significant fraction of the charges generated at the interface are quickly lost because of fast geminate recombination. This reduces the short-circuit current even further, leading to a scenario in which only around 2596 of the initial photoexcitations generate free charges that can potentially contribute to the photocurrent. In summary, the key photophysical limitations of perylene diimide as an acceptor in low-bandgap polymer blends appear at the interface between the materials, with the kinetics of both charge generation and separation inhibited as compared to that of fullerenes.}, language = {en} } @article{AlbrechtGrootoonkNeubertetal.2014, author = {Albrecht, Steve and Grootoonk, Bjorn and Neubert, Sebastian and Roland, Steffen and Wordenweber, Jan and Meier, Matthias and Schlatmann, Rutger and Gordijn, Aad and Neher, Dieter}, title = {Efficient hybrid inorganic/organic tandem solar cells with tailored recombination contacts}, series = {Solar energy materials \& solar cells : an international journal devoted to photovoltaic, photothermal, and photochemical solar energy conversion}, volume = {127}, journal = {Solar energy materials \& solar cells : an international journal devoted to photovoltaic, photothermal, and photochemical solar energy conversion}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0927-0248}, doi = {10.1016/j.solmat.2014.04.020}, pages = {157 -- 162}, year = {2014}, abstract = {In this work, the authors present a 7.5\% efficient hybrid tandem solar cell with the bottom cell made of amorphous silicon and a Si-PCPDTBT:PC70BM bulk heterojunction top cell. Loss-free recombination contacts were realized by combing Al-doped ZnO with either the conducting polymer composite PEDOT:PSS or with a bilayer of ultrathin Al and MoO3. Optimization of these contacts results in tandem cells with high fill factors of 70\% and an open circuit voltage close to the sum of those of the sub-cells. This is the best efficiency reported for this type of hybrid tandem cell so far. Optical and electrical device modeling suggests that the efficiency can be increased to similar to 12\% on combining a donor polymer with suitable absorption onset with PCBM. We also describe proof-of-principle studies employing light trapping in hybrid tandem solar cells, suggesting that this device architecture has the potential to achieve efficiencies well above 12\%. (C) 2014 Elsevier B.V. All rights reserved.}, language = {en} } @article{UllbrichBenduhnJiaetal.2019, author = {Ullbrich, Sascha and Benduhn, Johannes and Jia, Xiangkun and Nikolis, Vasileios C. and Tvingstedt, Kristofer and Piersimoni, Fortunato and Roland, Steffen and Liu, Yuan and Wu, Jinhan and Fischer, Axel and Neher, Dieter and Reineke, Sebastian and Spoltore, Donato and Vandewal, Koen}, title = {Emissive and charge-generating donor-acceptor interfaces for organic optoelectronics with low voltage losses}, series = {Nature materials}, volume = {18}, journal = {Nature materials}, number = {5}, publisher = {Nature Publ. Group}, address = {London}, issn = {1476-1122}, doi = {10.1038/s41563-019-0324-5}, pages = {459 -- 464}, year = {2019}, abstract = {Intermolecular charge-transfer states at the interface between electron donating (D) and accepting (A) materials are crucial for the operation of organic solar cells but can also be exploited for organic light-emitting diodes(1,2). Non-radiative charge-transfer state decay is dominant in state-of-the-art D-A-based organic solar cells and is responsible for large voltage losses and relatively low power-conversion efficiencies as well as electroluminescence external quantum yields in the 0.01-0.0001\% range(3,4). In contrast, the electroluminescence external quantum yield reaches up to 16\% in D-A-based organic light-emitting diodes(5-7). Here, we show that proper control of charge-transfer state properties allows simultaneous occurrence of a high photovoltaic and emission quantum yield within a single, visible-light-emitting D-A system. This leads to ultralow-emission turn-on voltages as well as significantly reduced voltage losses upon solar illumination. These results unify the description of the electro-optical properties of charge-transfer states in organic optoelectronic devices and foster the use of organic D-A blends in energy conversion applications involving visible and ultraviolet photons(8-11).}, language = {en} } @article{RolandKniepertLoveetal.2019, author = {Roland, Steffen and Kniepert, Juliane and Love, John A. and Negi, Vikas and Liu, Feilong and Bobbert, Peter and Melianas, Armantas and Kemerink, Martijn and Hofacker, Andreas and Neher, Dieter}, title = {Equilibrated Charge Carrier Populations Govern Steady-State Nongeminate Recombination in Disordered Organic Solar Cells}, series = {The journal of physical chemistry letters}, volume = {10}, journal = {The journal of physical chemistry letters}, number = {6}, publisher = {American Chemical Society}, address = {Washington}, issn = {1948-7185}, doi = {10.1021/acs.jpclett.9b00516}, pages = {1374 -- 1381}, year = {2019}, abstract = {We employed bias-assisted charge extraction techniques to investigate the transient and steady-state recombination of photogenerated charge carriers in complete devices of a disordered polymer-fullerene blend. Charge recombination is shown to be dispersive, with a significant slowdown of the recombination rate over time, consistent with the results from kinetic Monte Carlo simulations. Surprisingly, our experiments reveal little to no contributions from early time recombination of nonequilibrated charge carriers to the steady-state recombination properties. We conclude that energetic relaxation of photogenerated carriers outpaces any significant nongeminate recombination under application-relevant illumination conditions. With equilibrated charges dominating the steady-state recombination, quasi-equilibrium concepts appear suited for describing the open-circuit voltage of organic solar cells despite pronounced energetic disorder.}, language = {en} } @article{RolandSchubertCollinsetal.2014, author = {Roland, Steffen and Schubert, Marcel and Collins, Brian A. and Kurpiers, Jona and Chen, Zhihua and Facchetti, Antonio and Ade, Harald W. and Neher, Dieter}, title = {Fullerene-free polymer solar cells with highly reduced bimolecular recombination and field-independent charge carrier generation}, series = {The journal of physical chemistry letters}, volume = {5}, journal = {The journal of physical chemistry letters}, number = {16}, publisher = {American Chemical Society}, address = {Washington}, issn = {1948-7185}, doi = {10.1021/jz501506z}, pages = {2815 -- 2822}, year = {2014}, abstract = {Photogeneration, recombination, and transport of free charge carriers in all-polymer bulk heterojunction solar cells incorporating poly(3-hexylthiophene) (P3HT) as donor and poly([N,N'-bis(2-octyldodecyl)-naphthelene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'-(2,2'-bithiophene)) (P(NDI2OD-T2)) as acceptor polymer have been investigated by the use of time delayed collection field (TDCF) and time-of-flight (TOF) measurements. Depending on the preparation procedure used to dry the active layers, these solar cells comprise high fill factors (FFs) of up to 67\%. A strongly reduced bimolecular recombination (BMR), as well as a field-independent free charge carrier generation are observed, features that are common to high performance fullerene-based solar cells. Resonant soft X-ray measurements (R-SoXS) and photoluminescence quenching experiments (PQE) reveal that the BMR is related to domain purity. Our results elucidate the similarities of this polymeric acceptor with the superior recombination properties of fullerene acceptors.}, language = {en} } @article{RolandNeubertAlbrechtetal.2015, author = {Roland, Steffen and Neubert, Sebastian and Albrecht, Steve and Stannowski, Bernd and Seger, Mark and Facchetti, Antonio and Schlatmann, Rutger and Rech, Bernd and Neher, Dieter}, title = {Hybrid Organic/Inorganic Thin-Film Multijunction Solar Cells Exceeding 11\% Power Conversion Efficiency}, series = {Advanced materials}, volume = {27}, journal = {Advanced materials}, number = {7}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0935-9648}, doi = {10.1002/adma.201404698}, pages = {1262 -- 1267}, year = {2015}, abstract = {Hybrid multijunction solar cells comprising hydrogenated amorphous silicon and an organic bulk heterojunction are presented, reaching 11.7\% power conversion efficiency. The benefits of merging inorganic and organic subcells are pointed out, the optimization of the cells, including optical modeling predictions and tuning of the recombination contact are described, and an outlook of this technique is given.}, language = {en} }