@article{KietzkeNeherKumkeetal.2004, author = {Kietzke, Thomas and Neher, Dieter and Kumke, Michael Uwe and Montenegro, Rivelino V. D. and Landfester, Katharina and Scherf, Ullrich}, title = {A nanoparticle approach to control the phase separation in polyfluorene photovoltaic devices}, year = {2004}, abstract = {Polymer solar cell devices with nanostructured blend layers have been fabricated using single- and dual- component polymer nanospheres. Starting from an electron-donating and an electron-accepting polyfluorene derivative, PFB and F8BT, dissolved in suitable organic solvents, dispersions of solid particles with mean diameters of ca. 50 nm, containing either the pure polymer components or a mixture of PFB and F8BT in each particle, were prepared with the miniemulsion process. Photovoltaic devices based on these particles have been studied with respect to the correlation between external quantum efficiency and layer composition. It is shown that the properties of devices containing a blend of single-component PFB and F8BT particles differ significantly from those of solar cells based on blend particles, even for the same layer composition. Various factors determining the quantum efficiency in both kinds of devices are identified and discussed, taking into account the spectroscopic properties of the particles. An external quantum efficiency of ca. 4\% is measured for a device made from polymer blend nanoparticles containing PFB:F8BT at a weight ratio of 1:2 in each individual nanosphere. This is among the highest values reported so far for photovoltaic cells using this material combination}, language = {en} } @phdthesis{Montenegro2003, author = {Montenegro, Rivelino V. D.}, title = {Crystallization, biomimetics and semiconducting polymers in confined systems}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0000726}, school = {Universit{\"a}t Potsdam}, year = {2003}, abstract = {popul{\"a}rwissenschaftlicher Abstract: Kristallisation, Biomimetik und halbleitende Polymere in r{\"a}umlich begrenzten Systemen: {\"O}l und Wasser mischen sich nicht, man kann aber aus beiden Fl{\"u}ssigkeiten Emulsionen herstellen, bei denen Tr{\"o}pfchen der einen Fl{\"u}ssigkeit in der anderen Fl{\"u}ssigkeit vorliegen. Das heißt, es k{\"o}nnen entweder {\"O}ltr{\"o}pfchen in Wasser oder Wassertr{\"o}pfchen in {\"O}l erzeugt werden. Aus t{\"a}glichen Erfahrungen, z.B. beim Kochen weiß man jedoch, dass sich eine Emulsion durch Sch{\"u}tteln oder R{\"u}hren herstellen l{\"a}sst, diese jedoch nicht besonders stabil ist. Mit Hilfe von hohen Scherenergien kann man nun sehr kleine, in ihrer Gr{\"o}ße sehr einheitliche und außerdem sehr stabile Tr{\"o}pfchen von 1/10000 mm erhalten. Eine solche Emulsion wird Miniemulsion genannt. In der Dissertation wurden nun z.B. Miniemulsionen untersucht, die aus kleinen Wassertr{\"o}pfchen in einem {\"O}l bestehen. Es konnte gezeigt werden, dass das Wasser in diesen Tr{\"o}pfchen, also in den r{\"a}umlich begrenzten Systemen, nicht bei 0 \&\#176;C, sondern bei -22 \&\#176;C kristallisierte. Wie l{\"a}sst sich das erkl{\"a}ren? Wenn man einen Eimer Wasser hat, dann bildet sich normalerweise bei 0 \&\#176;C Eis, da n{\"a}mlich in dem Wasser einige (manchmal ganz wenige) Keime (z.B. Schutzteilchen, ein Fussel etc.) vorhanden sind, an denen sich die ersten Kristalle bilden. Wenn sich dann einmal ein Kristall gebildet hat, kann das Wasser im gesamten Eimer schnell zu Eis werden. Ultrareines Wasser w{\"u}rde bei -22 \&\#176;C kristallisieren. Wenn man jetzt die Menge Wasser aus dem Eimer in kleine Tr{\"o}pfchen bringt, dann hat man eine sehr, sehr große Zahl, n{\"a}mlich 1017 Tr{\"o}pfchen, in einem Liter Emulsion vorliegen. Die wenigen Schmutzpartikel verteilen auf sehr wenige Tr{\"o}pfchen, die anderen Tr{\"o}pfchen sind ultrarein. Daher kristallisieren sie erst bei -22 \&\#176;C. Im Rahmen der Arbeit konnte auch gezeigt werden, dass die Miniemulsionen genutzt werden k{\"o}nnen, um kleine Gelatine-Partikel, also Nanogummib{\"a}rchen, herzustellen. Diese Nanogummib{\"a}rchen quellen bei Erh{\"o}hung der Temperatur auf ca. 38 \&\#176;C an. Das kann ausgenutzt werden, um zum Beispiel Medikamente zun{\"a}chst in den Partikeln im menschlichen K{\"o}rper zu transportieren, die Medikamente werden dann an einer gew{\"u}nschten Stelle freigelassen. In der Arbeit wurde auch gezeigt, dass die Gelatine-Partikel genutzt werden k{\"o}nnen, um die Natur nachzuahnen (Biomimetik). Innerhalb der Partikel kann n{\"a}mlich gezielt Knochenmaterial aufgebaut werden kann. Die Gelatine-Knochen-Partikel k{\"o}nnen dazu genutzt werden, um schwer heilende oder komplizierte Knochenbr{\"u}che zu beheben. Gelatine wird n{\"a}mlich nach einigen Tagen abgebaut, das Knochenmaterial kann in den Knochen eingebaut werden. LEDs werden heute bereits vielf{\"a}ltig verwendet. LEDs bestehen aus Halbleitern, wie z.B. Silizium. Neuerdings werden dazu auch halbleitende Polymere eingesetzt. Das große Problem bei diesen Materialien ist, dass sie aus L{\"o}sungsmitteln aufgebracht werden. Im Rahmen der Doktorarbeit wurde gezeigt, dass der Prozess der Miniemulsionen genutzt werden kann, um umweltfreundlich diese LEDs herzustellen. Man stellt dazu nun w{\"a}ssrige Dispersionen mit den Polymerpartikeln her. Damit hat man nicht nur das L{\"o}sungsmittel vermieden, das hat nun noch einen weiteren Vorteil: man kann n{\"a}mlich diese Dispersion auf sehr einfache Art verdrucken, im einfachsten Fall verwendet man einfach einen handels{\"u}blichen Tintenstrahldrucker.}, language = {en} } @article{AsawapiromBulutFarrelletal.2004, author = {Asawapirom, Udom and Bulut, F. and Farrell, Tony and Gadermaier, C. and Gamerith, S. and G{\"u}ntner, Roland and Kietzke, Thomas and Patil, S. and Piok, T. and Montenegro, Rivelino V. D. and Stiller, Burkhard and Tiersch, Brigitte and Landfester, Katharina and List, E. J. W. and Neher, Dieter and Torres, C. S. and Scherf, Ullrich}, title = {Materials for polymer electronics applications semiconducting polymer thin films and nanoparticles}, issn = {1022-1360}, year = {2004}, abstract = {The paper presents two different approaches to nanostructured semiconducting polymer materials: (i) the generation of aqueous semiconducting polymer dispersions (semiconducting polymer nanospheres SPNs) and their processing into dense films and layers, and (ii) the synthesis of novel semiconducting polyfluorene-block-polyaniline (PF-b-PANI) block copolymers composed of conjugated blocks of different redox potentials which form nanosized morphologies in the solid state}, language = {en} } @article{KietzkeStillerLandfesteretal.2005, author = {Kietzke, Thomas and Stiller, Burkhard and Landfester, Katharina and Montenegro, Rivelino V. D. and Neher, Dieter}, title = {Probing the local optical properties of layers prepared from polymer nanoparticles}, issn = {0379-6779}, year = {2005}, abstract = {It is well known that the performance of solar cells based on a blend of hole-accepting and electron-accepting conjugated polymers as the active material depend crucially on the length scale of the resulting phase separated morphology. However, a direct control of this morphology is difficult if the layer is prepared from an organic solvent. To circumvent this difficulty, recently a universal method to fabricate defined nano-structured blend layer using nanoparticles dispersed in water was demonstrated. These nanoparticles were prepared with the miniemulsion method, which allows for the preparation of semiconducting polymer nanospheres (SPNs) with diameters in the range of 30 to 300 nanometres. Since the process starts from the active material dissolved in a common solvent, it can be applied to the fabrication of nanoparticles of blends of polymers with oligomers or even with inorganic materials. We present here for the first time scanning near field optical microscopy (SNOM) investigations on these novel nanostructured polymer layers. We show that by spin-coating a mixture of two different dispersions a nanoparticle monolayer with a statistically distribution of the nanoparticles can be obtained. Mixing conjugated polymer nanoparticles with some inert particles like polystyrene beads may allow for the preparation of nano-sized light emitters}, language = {en} } @article{LandfesterMontenegroScherfetal.2002, author = {Landfester, Katharina and Montenegro, Rivelino V. D. and Scherf, Ullrich and G{\"u}nter, R. and Asawapirom, Udom and Patil, S. and Neher, Dieter and Kietzke, Thomas}, title = {Semiconducting polymer nanospheres in aqeous dispersion prepared by a miniemulsion process}, year = {2002}, language = {en} }