@article{WessigMatthesSchildeetal.2013, author = {Wessig, Pablo and Matthes, Annika and Schilde, Uwe and Kelling, Alexandra}, title = {Asymmetric synthesis of (1,5)Naphthalenophanes by Dehydro-Diels-Alder reaction}, series = {European journal of organic chemistry}, journal = {European journal of organic chemistry}, number = {11}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1434-193X}, doi = {10.1002/ejoc.201201594}, pages = {2123 -- 2129}, year = {2013}, abstract = {An asymmetric variant of the dehydro-Diels-Alder (DDA) reaction has been developed and applied in the atropselective synthesis of various (1,5)naphthalenophanes. Whereas the suitability of the photochemically induced DDA (PDDA) was limited, the thermally induced DDA provided the desired product, depending on the chiral auxiliary used and the length of the linker, with nearly perfect stereoselectivity. Furthermore, the mechanism of the DDA was investigated by means of DFT calculations, and a stepwise mechanism involving 1,4-biradicals was suggested.}, language = {en} } @article{WessigMatthesSchilde2010, author = {Wessig, Pablo and Matthes, Annika and Schilde, Uwe}, title = {Crystal structure of 3,4-diacetyl-15,21-dioxatetracyclo- [23.4.0.02,7.06,11]nonacosa-1(29),2,4,6,8,10,25,27- octaene- 14,22-dione{\`u}water (1:2), C31H32O6 ยท 2H2O}, issn = {1433-7266}, year = {2010}, language = {en} } @phdthesis{Matthes2013, author = {Matthes, Annika}, title = {Die Dehydro-Diels-Alder-Reaktion (DDA-Reaktion) als neue Methode zur Darstellung von Naphthalenophanen}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-65264}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {Die Dissertation beschreibt die Herstellung von ringf{\"o}rmigen Verbindungen (Naphthalenophanen) mit Hilfe der Dehydro-Diels-Alder-Reaktion, wobei immer Enantiomerenpaare auftreten. Es wird der diastereoselektive Aufbau von Naphthalenophanen und der enantiomeren reine Aufbau von Biarylen untersucht. Desweiteren werden die physikalischen Eigenschaften der erhaltenen Verbindungen, wie die Phosphoreszenz, Trennbarkeit der entstehenden Enantiomere und die Ringspannung beschrieben.}, language = {de} } @misc{WessigMatthes2013, author = {Wessig, Pablo and Matthes, Annika}, title = {Photochemical synthesis and properties of 1,6- and 1,8-Naphthalenophanes}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1042}, issn = {1866-8372}, doi = {10.25932/publishup-47667}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-476675}, pages = {13}, year = {2013}, abstract = {Various 1,6- and 1,8-naphthalenophanes were synthesized by using the Photo-Dehydro-Diels-Alder (PDDA) reaction of bis-ynones. These compounds are easily accessible from omega-(3-iodophenyl)carboxylic acids in three steps. The obtained naphthalenophanes are axially chiral and the activation barrier for the atropisomerization could be determined in some cases by means of dynamic NMR (DNMR) and/or dynamic HPLC (DHPLC) experiments.}, language = {en} } @article{WessigMatthes2013, author = {Wessig, Pablo and Matthes, Annika}, title = {Photochemical synthesis and properties of 1,6- and 1,8-Naphthalenophanes}, series = {Molecules}, volume = {18}, journal = {Molecules}, number = {1}, publisher = {MDPI}, address = {Basel}, issn = {1420-3049}, doi = {10.3390/molecules18011314}, pages = {1314 -- 1324}, year = {2013}, abstract = {Various 1,6- and 1,8-naphthalenophanes were synthesized by using the Photo-Dehydro-Diels-Alder (PDDA) reaction of bis-ynones. These compounds are easily accessible from omega-(3-iodophenyl)carboxylic acids in three steps. The obtained naphthalenophanes are axially chiral and the activation barrier for the atropisomerization could be determined in some cases by means of dynamic NMR (DNMR) and/or dynamic HPLC (DHPLC) experiments.}, language = {en} } @article{WessigMatthes2011, author = {Wessig, Pablo and Matthes, Annika}, title = {Preparation of Strained Axially Chiral (1,5)Naphthalenophanes by Photo-dehydro-Diels-Alder Reaction}, series = {Journal of the American Chemical Society}, volume = {133}, journal = {Journal of the American Chemical Society}, number = {8}, publisher = {American Chemical Society}, address = {Washington}, issn = {0002-7863}, doi = {10.1021/ja109118m}, pages = {2642 -- 2650}, year = {2011}, abstract = {The preparation of 10 (1,5)naphthalenophanes (10a-j) by photo-dehydro-Diels-Alder (PDDA) reaction is described. Owing to hindered rotation around the biaryl axis, compounds 10 are axially chiral and the separation of enantiomers by chiral HPLC was demonstrated in three cases (10a,b,e). The absolute configuration of the isolated enantiomers could be unambiguously determined by comparison of calculated and measured circular dichroism (CD) spectra. Furthermore, we analyzed ring strain phenomena of (1,5)naphthalenophanes 10. Depending on the length of the linker units, one can distinguish three classes of naphthalenophanes. Compounds 10a-c are highly strained (E-STR = 7-31 kcal/mol), and the strain is caused by small bond angles in the linker unit and deformation of the naphthalene moiety. Another type of strain is observed if the linker unit becomes relatively long (10g,h) originating from transannular interactions and is comparable with the well-known strain of medium sized rings. The naphthalenophanes 10d-f with a linker length of 10-14 atoms are only marginally strained. To clearly discriminate the different sources of strain, we defined two geometrical parameters (average central dihedral angle delta(C) and naphthalene thickness D-N) and demonstrated that they are well-suited to indicate naphthalene deformation of our naphthalenophanes 10 as well as of ten model naphthalenophanes (I-X) with different linker lengths and linking positions.}, language = {en} } @article{WessigMatthesPick2011, author = {Wessig, Pablo and Matthes, Annika and Pick, Charlotte}, title = {The photo-dehydro-Diels-Alder (PDDA) reaction}, series = {Organic \& biomolecular chemistry : an international journal of synthetic, physical and biomolecular organic chemistry}, volume = {9}, journal = {Organic \& biomolecular chemistry : an international journal of synthetic, physical and biomolecular organic chemistry}, number = {22}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1477-0520}, doi = {10.1039/c1ob06066j}, pages = {7599 -- 7605}, year = {2011}, abstract = {The photo-dehydro-Diels-Alder (PDDA) reaction is a valuable extension of the classical Diels-Alder (DA) reaction. The PDDA reaction differs from the DA reaction by the replacement of one of the C-C-double bonds of the diene moiety by a C-C triple bond and by the photochemical triggering of the reaction. This entails that, in contrast to the DA reaction, the PDDA reaction proceeds according to a multistage mechanism with biradicals and cycloallenes as intermediates. The PDDA reaction provides access to a considerable variety of compound classes. For example, 1-phenylnaphthlenes, 1,1'-binaphthyls, N-heterocyclic biaryls, and naphthalenophanes could be obtained by this reaction.}, language = {en} }