@article{DurandBentzKwiateketal.2020, author = {Durand, Virginie and Bentz, Stephan and Kwiatek, Grzegorz and Dresen, Georg and Wollin, Christopher and Heidbach, Oliver and Martinez-Garzon, Patricia and Cotton, Fabrice and Nurlu, Murat and Bohnhoff, Marco}, title = {A two-scale preparation phase preceded an M-w 5.8 earthquake in the sea of marmara offshore Istanbul, Turkey}, series = {Seismological research letters}, volume = {91}, journal = {Seismological research letters}, number = {6}, address = {Boulder}, issn = {0895-0695}, doi = {10.1785/0220200110}, pages = {3139 -- 3147}, year = {2020}, abstract = {We analyze the spatiotemporal evolution of seismicity during a sequence of moderate (an M-w 4.7 foreshock and M-w 5.8 mainshock) earthquakes occurring in September 2019 at the transition between a creeping and a locked segment of the North Anatolian fault in the central Sea of Marmara, northwest Turkey. To investigate in detail the seismicity evolution, we apply a matched-filter technique to continuous waveforms, thus reducing the magnitude threshold for detection. Sequences of foreshocks preceding the two largest events are clearly seen, exhibiting two different behaviors: a long-term activation of the seismicity along the entire fault segment and a short-term concentration around the epicenters of the large events. We suggest a two-scale preparation phase, with aseismic slip preparing the mainshock final rupture a few days before, and a cascade mechanism leading to the nucleation of the mainshock. Thus, our study shows a combination of seismic and aseismic slip during the foreshock sequence changing the strength of the fault, bringing it closer to failure.}, language = {en} } @article{BentzMartinezGarzonKwiateketal.2019, author = {Bentz, Stephan and Martinez-Garzon, Patricia and Kwiatek, Grzegorz and Dresen, Georg and Bohnhoff, Marco}, title = {Analysis of Microseismicity Framing M-L > 2.5 Earthquakes at The Geysers Geothermal Field, California}, series = {Journal of geophysical research : Solid earth}, volume = {124}, journal = {Journal of geophysical research : Solid earth}, number = {8}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9313}, doi = {10.1029/2019JB017716}, pages = {8823 -- 8843}, year = {2019}, abstract = {Preparatory mechanisms accompanying or leading to nucleation of larger earthquakes have been observed at both laboratory and field scales, but conditions favoring the occurrence of observable preparatory processes are still largely unknown. In particular, it remains a matter of debate why some earthquakes occur spontaneously without noticeable precursors as opposed to events that are preceded by an extended failure process. In this study, we have generated new high-resolution seismicity catalogs framing the occurrence of 20 M-L > 2.5 earthquakes at The Geysers geothermal field in California. To this end, a seismicity catalog of the 11 days framing each large event was created. We selected 20 sequences sampling different hypocentral depths and hydraulic conditions within the field. Seismic activity and magnitude frequency distributions displayed by the different earthquake sequences are correlated with their location within the reservoir. Sequences located in the northwestern part of the reservoir show overall increased seismic activity and low b values, while the southeastern part is dominated by decreased seismic activity and higher b values. Periods of high injection coincide with high b values and vice versa. These observations potentially reflect varying differential and mean stresses and damage of the reservoir rocks across the field. About 50\% of analyzed sequences exhibit no change in seismicity rate in response to the large main event. However, we find complex waveforms at the onset of the main earthquake, suggesting that small ruptures spontaneously grow into or trigger larger events.}, language = {en} } @article{KwiatekSaarnoAderetal.2019, author = {Kwiatek, Grzegorz and Saarno, Tero and Ader, Thomas and Bl{\"u}mle, Felix and Bohnhoff, Marco and Chendorain, Michael and Dresen, Georg and Heikkinen, Pekka and Kukkonen, Ilmo and Leary, Peter and Leonhardt, Maria and Malin, Peter and Martinez-Garzon, Patricia and Passmore, Kevin and Passmore, Paul and Valenzuela, Sergio and Wollin, Christopher}, title = {Controlling fluid-induced seismicity during a 6.1-km-deep geothermal stimulation in Finland}, series = {Science Advances}, volume = {5}, journal = {Science Advances}, number = {5}, publisher = {American Association for the Advancement of Science}, address = {Washington}, issn = {2375-2548}, doi = {10.1126/sciadv.aav7224}, pages = {11}, year = {2019}, abstract = {We show that near-real-time seismic monitoring of fluid injection allowed control of induced earthquakes during the stimulation of a 6.1-km-deep geothermal well near Helsinki, Finland. A total of 18,160 m(3) of fresh water was pumped into crystalline rocks over 49 days in June to July 2018. Seismic monitoring was performed with a 24-station borehole seismometer network. Using near-real-time information on induced-earthquake rates, locations, magnitudes, and evolution of seismic and hydraulic energy, pumping was either stopped or varied-in the latter case, between well-head pressures of 60 and 90 MPa and flow rates of 400 and 800 liters/min. This procedure avoided the nucleation of a project-stopping magnitude M-W 2.0 induced earthquake, a limit set by local authorities. Our results suggest a possible physics-based approach to controlling stimulation-induced seismicity in geothermal projects.}, language = {en} } @article{KwiatekMartinezGarzonDresenetal.2015, author = {Kwiatek, Grzegorz and Martinez-Garzon, Patricia and Dresen, Georg and Bohnhoff, Marco and Sone, Hiroki and Hartline, Craig}, title = {Effects of long-term fluid injection on induced seismicity parameters and maximum magnitude in northwestern part of The Geysers geothermal field}, series = {Journal of geophysical research : Solid earth}, volume = {120}, journal = {Journal of geophysical research : Solid earth}, number = {10}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9313}, doi = {10.1002/2015JB012362}, pages = {7085 -- 7101}, year = {2015}, abstract = {The long-term temporal and spatial changes in statistical, source, and stress characteristics of one cluster of induced seismicity recorded at The Geysers geothermal field (U.S.) are analyzed in relation to the field operations, fluid migration, and constraints on the maximum likely magnitude. Two injection wells, Prati-9 and Prati-29, located in the northwestern part of the field and their associated seismicity composed of 1776 events recorded throughout a 7year period were analyzed. The seismicity catalog was relocated, and the source characteristics including focal mechanisms and static source parameters were refined using first-motion polarity, spectral fitting, and mesh spectral ratio analysis techniques. The source characteristics together with statistical parameters (b value) and cluster dynamics were used to investigate and understand the details of fluid migration scheme in the vicinity of injection wells. The observed temporal, spatial, and source characteristics were clearly attributed to fluid injection and fluid migration toward greater depths, involving increasing pore pressure in the reservoir. The seasonal changes of injection rates were found to directly impact the shape and spatial extent of the seismic cloud. A tendency of larger seismic events to occur closer to injection wells and a correlation between the spatial extent of the seismic cloud and source sizes of the largest events was observed suggesting geometrical constraints on the maximum likely magnitude and its correlation to the average injection rate and volume of fluids present in the reservoir.}, language = {en} } @article{HofmannZimmermannFarkasetal.2019, author = {Hofmann, Hannes and Zimmermann, G{\"u}nter and Farkas, M{\´a}rton P{\´a}l and Huenges, Ernst and Zang, Arno and Leonhardt, Maria and Kwiatek, Grzegorz and Martinez-Garzon, Patricia and Bohnhoff, Marco and Min, Ki-Bok and Fokker, Peter and Westaway, Rob and Bethmann, Falko and Meier, Peter and Yoon, Kern Shin and Choi, JaiWon and Lee, Tae Jong and Kim, Kwang Yeom}, title = {First field application of cyclic soft stimulation at the Pohang Enhanced Geothermal System site in Korea}, series = {Geophysical journal international}, volume = {217}, journal = {Geophysical journal international}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0956-540X}, doi = {10.1093/gji/ggz058}, pages = {926 -- 949}, year = {2019}, abstract = {Large-magnitude fluid-injection induced seismic events are a potential risk for geothermal energy developments worldwide. One potential risk mitigation measure is the application of cyclic injection schemes. After validation at small (laboratory) and meso (mine) scale, the concept has now been applied for the first time at field scale at the Pohang Enhanced Geothermal System (EGS) site in Korea. From 7 August until 14 August 2017 a total of 1756 m(3) of surface water was injected into Pohang well PX-1 at flow rates between 1 and 10 l s(-1), with a maximum wellhead pressure (WHP) of 22.8 MPa, according to a site-specific cyclic soft stimulation schedule and traffic light system. A total of 52 induced microearthquakes were detected in real-time during and shortly after the injection, the largest of M-w 1.9. After that event a total of 1771 m(3) of water was produced back from the well over roughly 1 month, during which time no larger-magnitude seismic event was observed. The hydraulic data set exhibits pressure-dependent injectivity increase with fracture opening between 15 and 17 MPa WHP, but no significant permanent transmissivity increase was observed. The maximum magnitude of the induced seismicity during the stimulation period was below the target threshold of M-w 2.0 and additional knowledge about the stimulated reservoir was gained. Additionally, the technical feasibility of cyclic injection at field scale was evaluated. The major factors that limited the maximum earthquake magnitude are believed to be: limiting the injected net fluid volume, flowback after the occurrence of the largest induced seismic event, using a cyclic injection scheme, the application of a traffic light system, and including a priori information from previous investigations and operations in the treatment design.}, language = {en} } @article{ZangStephanssonStenbergetal.2017, author = {Zang, Arno and Stephansson, Ove and Stenberg, Leif and Plenkers, Katrin and von Specht, Sebastian and Milkereit, Claus and Schill, Eva and Kwiatek, Grzegorz and Dresen, Georg and Zimmermann, G{\"u}nter and Dahm, Torsten and Weber, Michael}, title = {Hydraulic fracture monitoring in hard rock at 410 m depth with an advanced fluid-injection protocol and extensive sensor array}, series = {Geophysical journal international}, volume = {208}, journal = {Geophysical journal international}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0956-540X}, pages = {790 -- 813}, year = {2017}, abstract = {In this paper, an underground experiment at the Aspo Hard Rock Laboratory (HRL) is described. Main goal is optimizing geothermal heat exchange in crystalline rock mass at depth by multistage hydraulic fracturing with minimal impact on the environment, that is, seismic events. For this, three arrays with acoustic emission, microseismicity and electromagnetic sensors are installed mapping hydraulic fracture initiation and growth. Fractures are driven by three different water injection schemes (continuous, progressive and pulse pressurization). After a brief review of hydraulic fracture operations in crystalline rock mass at mine scale, the site geology and the stress conditions at Aspo HRL are described. Then, the continuous, single-flow rate and alternative, multiple-flow rate fracture breakdown tests in a horizontal borehole at depth level 410 m are described together with the monitoring networks and sensitivity. Monitoring results include the primary catalogue of acoustic emission hypocentres obtained from four hydraulic fractures with the in situ trigger and localizing network. The continuous versus alternative water injection schemes are discussed in terms of the fracture breakdown pressure, the fracture pattern from impression packer result and the monitoring at the arrays. An example of multistage hydraulic fracturing with several phases of opening and closing of fracture walls is evaluated using data from acoustic emissions, seismic broad-band recordings and electromagnetic signal response. Based on our limited amount of in situ tests (six) and evaluation of three tests in Avro granodiorite, in the multiple-flow rate test with progressively increasing target pressure, the acoustic emission activity starts at a later stage in the fracturing process compared to the conventional fracturing case with continuous water injection. In tendency, also the total number and magnitude of acoustic events are found to be smaller in the progressive treatment with frequent phases of depressurization.}, language = {en} } @article{MartinezGarzonKwiatekBohnhoffetal.2016, author = {Martinez-Garzon, Patricia and Kwiatek, Grzegorz and Bohnhoff, Marco and Dresen, Georg}, title = {Impact of fluid injection on fracture reactivation at The Geysers geothermal field}, series = {Journal of geophysical research : Solid earth}, volume = {121}, journal = {Journal of geophysical research : Solid earth}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9313}, doi = {10.1002/2016JB013137}, pages = {7432 -- 7449}, year = {2016}, abstract = {We analyze the spatiotemporal distribution of fault geometries from seismicity induced by fluid injection at The Geysers geothermal field. The consistency of these faults with the local stress field is investigated using (1) the fault instability coefficient I comparing the orientation of a fault with the optimal orientation for failure in the assumed stress field and (2) the misfit angle beta between slip vectors observed from focal mechanisms and predicted from stress tensor. A statistical approach is applied to calculate the most likely fault instabilities considering the uncertainties from focal mechanisms and stress inversion. We find that faults activated by fluid injection may display a broad range in orientations. About 72\% of the analyzed seismicity occurs on faults with favorable orientation for failure with respect to the stress field. However, a number of events are observed either to occur on severely misoriented faults or to slip in a different orientation than predicted from stress field. These events mostly occur during periods of high injection rates and are located in proximity to the injection wells. From the stress inversion, the friction coefficient providing the largest overall instability is mu = 0.5. About 91\% of the events are activated with an estimated excess pore pressure <10 MPa, in agreement with previous models considering the combined effect of thermal and poroelastic stress changes from fluid injection. Furthermore, high seismic activity and largest magnitudes occur on favorably oriented faults with large instability coefficients and low slip misfit angles.}, language = {en} } @article{WangKwiatekRybackietal.2020, author = {Wang, Lei and Kwiatek, Grzegorz and Rybacki, Erik and Bohnhoff, Marco and Dresen, Georg}, title = {Injection-induced seismic moment release and laboratory fault slip}, series = {Geophysical research letters}, volume = {47}, journal = {Geophysical research letters}, number = {22}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0094-8276}, doi = {10.1029/2020GL089576}, pages = {11}, year = {2020}, abstract = {Understanding the relation between injection-induced seismic moment release and operational parameters is crucial for early identification of possible seismic hazards associated with fluid-injection projects. We conducted laboratory fluid-injection experiments on permeable sandstone samples containing a critically stressed fault at different fluid pressurization rates. The observed fluid-induced fault deformation is dominantly aseismic. Fluid-induced stick-slip and fault creep reveal that total seismic moment release of acoustic emission (AE) events is related to total injected volume, independent of respective fault slip behavior. Seismic moment release rate of AE scales with measured fault slip velocity. For injection-induced fault slip in a homogeneous pressurized region, released moment shows a linear scaling with injected volume for stable slip (steady slip and fault creep), while we find a cubic relation for dynamic slip. Our results highlight that monitoring evolution of seismic moment release with injected volume in some cases may assist in discriminating between stable slip and unstable runaway ruptures.}, language = {en} } @article{KwiatekMartinezGarzonPlenkersetal.2018, author = {Kwiatek, Grzegorz and Martinez-Garzon, Patricia and Plenkers, K. and Leonhardt, Maria and Zang, Arno and von Specht, Sebastian and Dresen, Georg and Bohnhoff, Marco}, title = {Insights into complex subdecimeter fracturing processes occurring during a water injection experiment at depth in Aspo Hard Rock Laboratory, Sweden}, series = {Journal of geophysical research : Solid earth}, volume = {123}, journal = {Journal of geophysical research : Solid earth}, number = {8}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9313}, doi = {10.1029/2017JB014715}, pages = {6616 -- 6635}, year = {2018}, abstract = {We investigate the source characteristics of picoseismicity (M-w < -2) recorded during a hydraulic fracturing in situ experiment performed in the underground Aspo Hard Rock Laboratory, Sweden. The experiment consisted of six stimulations driven by three different water injection schemes and was performed inside a 28-m-long, horizontal borehole located at 410-m depth. The fracturing processes were monitored with a variety of seismic networks including broadband seismometers, geophones, high-frequency accelerometers, and acoustic emission sensors thereby covering a wide frequency band between 0.01 and 100,000Hz. Here we study the high-frequency signals with dominant frequencies exceeding 1000 Hz. The combined seismic network allowed for detection and detailed analysis of 196 small-scale seismic events with moment magnitudes M-W < -3.5 (source sizes of decimeter scale) that occurred solely during the stimulations and shortly after. The double-difference relocated hypocenter catalog as well as source parameters were used to study the physical characteristics of the induced seismicity and then compared to the stimulation parameters. We observe a spatiotemporal migration of the picoseismic events away and toward the injection intervals in direct correlation with changes in the hydraulic energy (product of fluid injection pressure and injection rate). We find that the total radiated seismic energy is extremely low with respect to the product of injected fluid volume and pressure (hydraulic energy). The radiated seismic energy correlates well with the hydraulic energy rate. The obtained fault plane solutions for particularly well-characterized events signify the reactivation of preexisting rock defects under influence of increased pore fluid pressure on fault plane orientations in good correspondence with the local stress field orientation.}, language = {en} } @article{WangKwiatekRybackietal.2020, author = {Wang, Lei and Kwiatek, Grzegorz and Rybacki, Erik and Bonnelye, Audrey and Bohnhoff, Marco and Dresen, Georg}, title = {Laboratory study on fluid-induced fault slip behavior: the role of fluid pressurization rate}, series = {Geophysical research letters : GRL}, volume = {47}, journal = {Geophysical research letters : GRL}, number = {6}, publisher = {Wiley}, address = {Hoboken, NJ}, issn = {0094-8276}, doi = {10.1029/2019GL086627}, pages = {12}, year = {2020}, abstract = {Understanding the physical mechanisms governing fluid-induced fault slip is important for improved mitigation of seismic risks associated with large-scale fluid injection. We conducted fluid-induced fault slip experiments in the laboratory on critically stressed saw-cut sandstone samples with high permeability using different fluid pressurization rates. Our experimental results demonstrate that fault slip behavior is governed by fluid pressurization rate rather than injection pressure. Slow stick-slip episodes (peak slip velocity < 4 mu m/s) are induced by fast fluid injection rate, whereas fault creep with slip velocity < 0.4 mu m/s mainly occurs in response to slow fluid injection rate. Fluid-induced fault slip may remain mechanically stable for loading stiffness larger than fault stiffness. Independent of fault slip mode, we observed dynamic frictional weakening of the artificial fault at elevated pore pressure. Our observations highlight that varying fluid injection rates may assist in reducing potential seismic hazards of field-scale fluid injection projects.
Plain Language Summary Human-induced earthquakes from field-scale fluid injection projects including enhanced geothermal system and deep wastewater injection have been documented worldwide. Although it is clear that fluid pressure plays a crucial role in triggering fault slip, the physical mechanism behind induced seismicity still remains poorly understood. We performed laboratory tests, and here we present two fluid-induced slip experiments conducted on permeable Bentheim sandstone samples crosscut by a fault that is critically stressed. Fault slip is then triggered by pumping the water from the bottom end of the sample at different fluid injection rates. Our results show that fault slip is controlled by fluid pressure increase rate rather than by the absolute magnitude of fluid pressure. In contrast to episodes of relatively rapid but stable sliding events caused by a fast fluid injection rate, fault creep is observed during slow fluid injection. Strong weakening of the dynamic friction coefficient of the experimental fault is observed at elevated pore pressure, independent of fault slip mode. These results may provide a better understanding of the complex behavior of fluid-induced fault slip on the field scale.}, language = {en} }