@article{CasselRischMayeretal.2019, author = {Cassel, Michael and Risch, Lucie and Mayer, Frank and Kaplick, Hannes and Engel, Aaron and Kulig, Kornelia and Bashford, Greg}, title = {Achilles tendon morphology assessed using image based spatial frequency analysis is altered among healthy elite adolescent athletes compared to recreationally active controls}, series = {Journal of science and medicine in sport : official journal of Sports Medicine Australia}, volume = {22}, journal = {Journal of science and medicine in sport : official journal of Sports Medicine Australia}, number = {8}, publisher = {Elsevier}, address = {Oxford}, issn = {1440-2440}, doi = {10.1016/j.jsams.2019.03.011}, pages = {882 -- 886}, year = {2019}, abstract = {Objectives: Although expected, tendon adaptations in adolescent elite athletes have been underreported. Morphologically, adaptations may occur by an increase in collagen fiber density and/or organization. These characteristics can be captured using spatial frequency parameters extracted from ultrasound images. This study aims to compare Achilles tendon (AT) morphology among sports-specific cohorts of elite adolescent athletes and to compare these findings to recreationally active controls by use of spatial frequency analysis. Design: Cross-sectional observational study. Method: In total, 334 healthy adolescent athletes from four sport categories (ball, combat, endurance, explosive strength) and 35 healthy controls were included. Longitudinal ultrasound scans were performed at the AT insertion and midportion. Intra-tendinous-morphology was quantified by performing spatial frequency analysis assessing eight parameters at standardized ROls. Increased values in five parameters suggest a higher structural organization, and in two parameters higher fiber density. One parameter represents a quotient combining both organization and fiber density. Results: Among athletes, only ball sport athletes exhibited an increase in one summative parameter at pre-insertion site compared to athletes from other sport categories. When compared to athletes, controls had significantly higher values of four parameters at pre-insertion and three parameters at midportion site reflecting differences in both, fiber organization and density. Conclusions: Intra-tendinous-morphology was similar in all groups of adolescent athletes. Higher values found in non-athletes might suggest higher AT fiber density and organization. It is yet unclear whether the lesser structural organization in young athletes represents initial AT pathology, or a physiological adaptive response at the fiber cross-linking level. (C) 2019 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.}, language = {en} } @misc{LinKhajooeiNairetal.2020, author = {Lin, Chiao-I and Khajooei, Mina and Nair, Alexandra and Heikkila, Mika and Kaplick, Hannes and Tilman, Engel and Mayer, Frank}, title = {Activities of hip muscles in response to perturbed walking in individual with chronic ankle instability}, series = {Medicine and science in sports and exercise : MSSE}, volume = {52}, journal = {Medicine and science in sports and exercise : MSSE}, number = {17}, publisher = {Lippincott Williams \& Wilkins}, address = {Philadelphia}, issn = {0195-9131}, doi = {10.1249/01.mss.0000671060.98581.0b}, pages = {94 -- 94}, year = {2020}, abstract = {Chronic ankle instability (CAI) is not only an ankle issue, but also affects sensorimotor system. People with CAI show altered muscle activation in proximal joints such as hip and knee. However, evidence is limited as controversial results have been presented regarding changes in activation of hip muscles in CAI population. PURPOSE: To investigate the effect of CAI on activity of hip muscles during normal walking and walking with perturbations. METHODS: 8 subjects with CAI (23 ± 2 years, 171 ± 7 cm and 65 ± 4 kg) and 8 controls (CON) matched by age, height, weight and dominant leg (25 ± 3 years, 172 ± 7 cm and 65 ± 6 kg) walked shoed on a split-belt treadmill (1 m/s). Subjects performed 5 minutes of baseline walking and 6 minutes walking with 10 perturbations (at 200 ms after heel contact with 42 m/s2 deceleration impulse) on each side. Electromyography signals from gluteus medius (Gmed) and gluteus maximus (Gmax) were recorded while walking. Muscle amplitudes (Root Mean Square normalized to maximum voluntary isometric contraction) were calculated at 200 ms before heel contact (Pre200), 100 ms after heel contact (Post100) during normal walking and 200 ms after perturbations (Pert200). Differences between groups were examined using Mann Whitney U test and Bonferroni correction to account for multiple testing (adjust α level p≤ 0.0125). RESULT: In Gmed, CAI group showed lower muscle amplitude than CON group after heel contact (Post100: 18±7 \% and 47±21 \%, p< .01) and after walking perturbations ( 31±13 \% and 62±26 \%, p< .01), but not before heel contact (Pre200: 5±2 \% and 11±10 \%, p= 0.195). In Gmax, no difference was found between CAI and CON groups in all three time points (Pre200: 12±5 \% and 17±12 \%, p= 0.574; Post100: 41±21 \% and 41±13 \%, p= 1.00; Pert200: 79±46 \% and 62±35 \%, p= 0.505). CONCLUSION: People with CAI activated Gmed less than healthy control in feedback mechanism (after heel contact and walking with perturbations), but not in feedforward mechanism (before heel contact). Less activation on Gmed may affect the balance in frontal plane and increase the risk of recurrent ankle sprain, giving way or feeling ankle instability in patients with CAI during walking. Future studies should investigate the effect of Gmed strengthening or neuromuscular training on CAI rehabilitation.}, language = {en} } @article{HenschkeKaplickWochatzetal.2022, author = {Henschke, Jakob and Kaplick, Hannes and Wochatz, Monique and Engel, Tilman}, title = {Assessing the validity of inertial measurement units for shoulder kinematics using a commercial sensor-software system}, series = {Health science reports}, volume = {5}, journal = {Health science reports}, number = {5}, publisher = {Wiley}, address = {Hoboken}, issn = {2398-8835}, doi = {10.1002/hsr2.772}, pages = {1 -- 11}, year = {2022}, abstract = {Background and Aims Wearable inertial sensors may offer additional kinematic parameters of the shoulder compared to traditional instruments such as goniometers when elaborate and time-consuming data processing procedures are undertaken. However, in clinical practice simple-real time motion analysis is required to improve clinical reasoning. Therefore, the aim was to assess the criterion validity between a portable "off-the-shelf" sensor-software system (IMU) and optical motion (Mocap) for measuring kinematic parameters during active shoulder movements. Methods 24 healthy participants (9 female, 15 male, age 29 +/- 4 years, height 177 +/- 11 cm, weight 73 +/- 14 kg) were included. Range of motion (ROM), total range of motion (TROM), peak and mean angular velocity of both systems were assessed during simple (abduction/adduction, horizontal flexion/horizontal extension, vertical flexion/extension, and external/internal rotation) and complex shoulder movements. Criterion validity was determined using intraclass-correlation coefficients (ICC), root mean square error (RMSE) and Bland and Altmann analysis (bias; upper and lower limits of agreement). Results ROM and TROM analysis revealed inconsistent validity during simple (ICC: 0.040-0.733, RMSE: 9.7 degrees-20.3 degrees, bias: 1.2 degrees-50.7 degrees) and insufficient agreement during complex shoulder movements (ICC: 0.104-0.453, RMSE: 10.1 degrees-23.3 degrees, bias: 1.0 degrees-55.9 degrees). Peak angular velocity (ICC: 0.202-0.865, RMSE: 14.6 degrees/s-26.7 degrees/s, bias: 10.2 degrees/s-29.9 degrees/s) and mean angular velocity (ICC: 0.019-0.786, RMSE:6.1 degrees/s-34.2 degrees/s, bias: 1.6 degrees/s-27.8 degrees/s) were inconsistent. Conclusions The "off-the-shelf" sensor-software system showed overall insufficient agreement with the gold standard. Further development of commercial IMU-software-solutions may increase measurement accuracy and permit their integration into everyday clinical practice.}, language = {en} } @misc{HenschkeKaplickWochatzetal.2022, author = {Henschke, Jakob and Kaplick, Hannes and Wochatz, Monique and Engel, Tilman}, title = {Assessing the validity of inertial measurement units for shoulder kinematics using a commercial sensor-software system}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1866-8364}, doi = {10.25932/publishup-57827}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-578278}, pages = {1 -- 11}, year = {2022}, abstract = {Background and Aims Wearable inertial sensors may offer additional kinematic parameters of the shoulder compared to traditional instruments such as goniometers when elaborate and time-consuming data processing procedures are undertaken. However, in clinical practice simple-real time motion analysis is required to improve clinical reasoning. Therefore, the aim was to assess the criterion validity between a portable "off-the-shelf" sensor-software system (IMU) and optical motion (Mocap) for measuring kinematic parameters during active shoulder movements. Methods 24 healthy participants (9 female, 15 male, age 29 +/- 4 years, height 177 +/- 11 cm, weight 73 +/- 14 kg) were included. Range of motion (ROM), total range of motion (TROM), peak and mean angular velocity of both systems were assessed during simple (abduction/adduction, horizontal flexion/horizontal extension, vertical flexion/extension, and external/internal rotation) and complex shoulder movements. Criterion validity was determined using intraclass-correlation coefficients (ICC), root mean square error (RMSE) and Bland and Altmann analysis (bias; upper and lower limits of agreement). Results ROM and TROM analysis revealed inconsistent validity during simple (ICC: 0.040-0.733, RMSE: 9.7 degrees-20.3 degrees, bias: 1.2 degrees-50.7 degrees) and insufficient agreement during complex shoulder movements (ICC: 0.104-0.453, RMSE: 10.1 degrees-23.3 degrees, bias: 1.0 degrees-55.9 degrees). Peak angular velocity (ICC: 0.202-0.865, RMSE: 14.6 degrees/s-26.7 degrees/s, bias: 10.2 degrees/s-29.9 degrees/s) and mean angular velocity (ICC: 0.019-0.786, RMSE:6.1 degrees/s-34.2 degrees/s, bias: 1.6 degrees/s-27.8 degrees/s) were inconsistent. Conclusions The "off-the-shelf" sensor-software system showed overall insufficient agreement with the gold standard. Further development of commercial IMU-software-solutions may increase measurement accuracy and permit their integration into everyday clinical practice.}, language = {en} } @misc{SchomoellerRischKaplicketal.2020, author = {Schom{\"o}ller, Anne and Risch, Lucie and Kaplick, Hannes and Schraplau, Anne and Wochatz, Monique and Engel, Tilman and Sonnenburg, Dominik and Mayer, Frank}, title = {Changes in paraspinal muscle T2 times and creatine kinase after a bout of eccentric exercise}, series = {Medicine and science in sports and exercise : official journal of the American College of Sports Medicine}, volume = {52}, journal = {Medicine and science in sports and exercise : official journal of the American College of Sports Medicine}, number = {17}, publisher = {Lippincott Williams \& Wilkins}, address = {Philadelphia}, issn = {0195-9131}, doi = {10.1249/01.mss.0000685648.68626.f1}, pages = {929 -- 929}, year = {2020}, abstract = {Eccentric (ECC) exercises might cause muscle damage, characterized by delayed-onset muscle soreness, elevated creatine kinase (CK) levels and local muscle oedema, shown by elevated T2 times in magnet resonance imaging (MRI) scans. Previous research suggests a high inter-individual difference regarding these systemic and local responses to eccentric workload. PURPOSE: To analyze ECC exercise-induced muscle damage in lumbar paraspinal muscles assessed via MRI. METHODS: Ten participants (3f/7m; 33±6y; 174±8cm; 71±12kg) were included in the study. Quantitative paraspinal muscle constitution of M. erector spinae and M. multifidius were assessed in supine position before and 72h after an intense eccentric trunk exercise bout in a mobile 1.5 tesla MRI device. MRI scans were recorded on spinal level L3 (T2-weighted TSE echo sequences, 11 slices, 2mm slice thickness, 3mm gap, echo times: 20, 40, 60, 80, 100ms, TR time: 2500ms). Muscle T2 times were calculated for manually traced regions of interest of the respective muscles with an imaging software. The exercise protocol was performed in an isokinetic device and consisted of 120sec alternating ECC trunk flexion-extension with maximal effort. Venous blood samples were taken before and 72h after the ECC exercise. Descriptive statistics (mean±SD) and t-testing for pre-post ECC exercises were performed. RESULTS: T2 times increased from pre- to post-ECC MRI measurements from 55±3ms to 79±28ms in M. erector spinae and from 62±5ms to 78±24ms in M. multifidius (p<0.001). CK increased from 126±97 U/L to 1447±20579 U/L. High SDs of T2 time and CK in post-ECC measures could be due to inter-individual reactions to ECC exercises. 3 participants showed high local and systemic reactions (HR) with T2 time increases of 120±24\% (M. erector spinae) and 73±50\% (M. multifidius). In comparison, the remaining 7 participants showed increases of 11±12\% (M. erector spinae) and 7±9\% (M. multifidius) in T2 time. Mean CK increased 9.5-fold in the 3 HR subjects compared with the remaining 7 subjects. CONCLUSIONS: The 120sec maximal ECC trunk flexion-extension protocol induced high amounts of muscle damage in 3 participants. Moderate to low responses were found in the remaining 7 subjects, assuming that inter-individual predictors play a role regarding physiological responses to ECC workload.}, language = {en} } @misc{SchraplauSonnenburgWochatzetal.2020, author = {Schraplau, Anne and Sonnenburg, Dominik and Wochatz, Monique and Engel, Tilman and Schom{\"o}ller, Anne and Risch, Lucie and Kaplick, Hannes and Mayer, Frank}, title = {Characterization of muscle damage and inflammation following repeated maximal eccentric loading of the trunk}, series = {Medicine and science in sports and exercise : official journal of the American College of Sports Medicine}, volume = {52}, journal = {Medicine and science in sports and exercise : official journal of the American College of Sports Medicine}, number = {7S}, publisher = {Lippincott Williams \& Wilkins}, address = {Philadelphia}, issn = {0195-9131}, doi = {10.1249/01.mss.0000679532.65880.af}, pages = {497 -- 497}, year = {2020}, abstract = {Eccentric exercises (ECC) induce reversible muscle damage, delayed-onset muscle soreness and an inflammatory reaction that is often followed by a systemic anti-inflammatory response. Thus, ECC might be beneficial for treatment of metabolic disorders which are frequently accompanied by a low-grade systemic inflammation. However, extent and time course of a systemic immune response after repeated ECC bouts are poorly characterized. PURPOSE: To analyze the (anti-)inflammatory response after repeated ECC loading of the trunk. METHODS: Ten healthy participants (33 ± 6 y; 173 ± 14 cm; 74 ± 16 kg) performed three isokinetic strength measurements of the trunk (concentric (CON), ECC1, ECC2, each 2 wks apart; flexion/extension, velocity 60°/s, 120s MVC). Pre- and 4, 24, 48, 72, 168h post-exercise, muscle soreness (numeric rating scale, NRS) was assessed and blood samples were taken and analyzed [Creatine kinase (CK), C-reactive protein (CRP), Interleukin-6 (IL-6), IL-10, Tumor necrosis factor-α (TNF-α)]. Statistics were done by Friedman's test with Dunn's post hoc test (α=.05). RESULTS: Mean peak torque was higher during ECC1 (319 ± 142 Nm) than during CON (268 ± 108 Nm; p<.05) and not different between ECC1 and ECC2 (297 ± 126 Nm; p>.05). Markers of muscle damage (peaks post-ECC1: NRS 48h, 4.4±2.9; CK 72h, 14407 ± 19991 U/l) were higher after ECC1 than after CON and ECC2 (p<.05). The responses over 72h (stated as Area under the Curve, AUC) were abolished after ECC2 compared to ECC1 (p<.05) indicating the presence of the repeated bout effect. CRP levels were not changed. IL-6 levels increased 2-fold post-ECC1 (pre: 0.5 ± 0.4 vs. 72h: 1.0 ± 0.8 pg/ml). The IL-6 response was enhanced after ECC1 (AUC 61 ± 37 pg/ml*72h) compared to CON (AUC 33 ± 31 pg/ml*72h; p<.05). After ECC2, the IL-6 response (AUC 43 ± 25 pg/ml*72h) remained lower than post-ECC1, but the difference was not statistically significant. Serum levels of TNF-α and of the anti-inflammatory cytokine IL-10 were below detection limits. Overall, markers of muscle damage and immune response showed high inter-individual variability. CONCLUSION: Despite maximal ECC loading of a large muscle group, no anti-inflammatory and just weak inflammatory responses were detected in healthy adults. Whether ECC elicits a different reaction in inflammatory clinical conditions is unclear.}, language = {en} } @article{EngelSchraplauWochatzetal.2021, author = {Engel, Tilman and Schraplau, Anne and Wochatz, Monique and Kopinski, Stephan and Sonnenburg, Dominik and Schom{\"o}ller, Anne and Risch, Lucie and Kaplick, Hannes and Mayer, Frank}, title = {Feasability of An Eccentric Isokinetic Protocol to Induce Trunk Muscle Damage: A Pilot Study}, series = {Sports Medicine International Open}, volume = {6}, journal = {Sports Medicine International Open}, edition = {1}, publisher = {Thieme}, address = {Stuttgart}, issn = {2367-1890}, doi = {10.1055/a-1757-6724}, pages = {E9 -- E17}, year = {2021}, abstract = {Eccentric exercise is discussed as a treatment option for clinical populations, but specific responses in terms of muscle damage and systemic inflammation after repeated loading of large muscle groups have not been conclusively characterized. Therefore, this study tested the feasibility of an isokinetic protocol for repeated maximum eccentric loading of the trunk muscles. Nine asymptomatic participants (5 f/4 m; 34±6 yrs; 175±13 cm; 76±17 kg) performed three isokinetic 2-minute all-out trunk strength tests (1x concentric (CON), 2x eccentric (ECC1, ECC2), 2 weeks apart; flexion/extension, 60°/s, ROM 55°). Outcomes were peak torque, torque decline, total work, and indicators of muscle damage and inflammation (over 168 h). Statistics were done using the Friedman test (Dunn's post-test). For ECC1 and ECC2, peak torque and total work were increased and torque decline reduced compared to CON. Repeated ECC bouts yielded unaltered torque and work outcomes. Muscle damage markers were highest after ECC1 (soreness 48 h, creatine kinase 72 h; p<0.05). Their overall responses (area under the curve) were abolished post-ECC2 compared to post-ECC1 (p<0.05). Interleukin-6 was higher post-ECC1 than CON, and attenuated post-ECC2 (p>0.05). Interleukin-10 and tumor necrosis factor-α were not detectable. All markers showed high inter-individual variability. The protocol was feasible to induce muscle damage indicators after exercising a large muscle group, but the pilot results indicated only weak systemic inflammatory responses in asymptomatic adults.}, language = {en} } @misc{EngelSchraplauWochatzetal.2021, author = {Engel, Tilman and Schraplau, Anne and Wochatz, Monique and Kopinski, Stephan and Sonnenburg, Dominik and Schom{\"o}ller, Anne and Risch, Lucie and Kaplick, Hannes and Mayer, Frank}, title = {Feasability of An Eccentric Isokinetic Protocol to Induce Trunk Muscle Damage: A Pilot Study}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1866-8364}, doi = {10.25932/publishup-55740}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-557409}, pages = {E9 -- E17}, year = {2021}, abstract = {Eccentric exercise is discussed as a treatment option for clinical populations, but specific responses in terms of muscle damage and systemic inflammation after repeated loading of large muscle groups have not been conclusively characterized. Therefore, this study tested the feasibility of an isokinetic protocol for repeated maximum eccentric loading of the trunk muscles. Nine asymptomatic participants (5 f/4 m; 34±6 yrs; 175±13 cm; 76±17 kg) performed three isokinetic 2-minute all-out trunk strength tests (1x concentric (CON), 2x eccentric (ECC1, ECC2), 2 weeks apart; flexion/extension, 60°/s, ROM 55°). Outcomes were peak torque, torque decline, total work, and indicators of muscle damage and inflammation (over 168 h). Statistics were done using the Friedman test (Dunn's post-test). For ECC1 and ECC2, peak torque and total work were increased and torque decline reduced compared to CON. Repeated ECC bouts yielded unaltered torque and work outcomes. Muscle damage markers were highest after ECC1 (soreness 48 h, creatine kinase 72 h; p<0.05). Their overall responses (area under the curve) were abolished post-ECC2 compared to post-ECC1 (p<0.05). Interleukin-6 was higher post-ECC1 than CON, and attenuated post-ECC2 (p>0.05). Interleukin-10 and tumor necrosis factor-α were not detectable. All markers showed high inter-individual variability. The protocol was feasible to induce muscle damage indicators after exercising a large muscle group, but the pilot results indicated only weak systemic inflammatory responses in asymptomatic adults.}, language = {en} } @article{IntziegianniCasselRaufetal.2016, author = {Intziegianni, Konstantina and Cassel, Michael and Rauf, S. and White, S. and Rector, Michael V. and Kaplick, Hannes and Wahmkow, Gunnar and Kratzenstein, S. and Mayer, Frank}, title = {Influence of Age and Pathology on Achilles Tendon Properties During a Single-leg Jump}, series = {International journal of sports medicine}, volume = {37}, journal = {International journal of sports medicine}, publisher = {Thieme}, address = {Stuttgart}, issn = {0172-4622}, doi = {10.1055/s-0042-108198}, pages = {973 -- 978}, year = {2016}, abstract = {Prevalence of Achilles tendinopathy increases with age leading to a weaker tendon with predisposition to rupture. Conclusive evidence of the influence of age and pathology on Achilles tendon (AT) properties remains limited, as previous studies are based on standardized isometric conditions. The study investigates the influence of age and pathology on AT properties during single-leg vertical jump (SLVJ). 10 children (C), 10 asymptomatic adults (A), and 10 tendinopathic patients (T) were included. AT elongation [mm] from rest to maximal displacement during a SLVJ on a force-plate was sonographically assessed. AT compliance [mm/N]) and strain [\%] was calculated by dividing elongation by peak ground reaction force [N] and length, respectively. One-way ANOVA followed by Bonferroni post-hoc correction (=0.05) were used to compare C with A and A with T. AT elongation (p=0.004), compliance (p=0.001), and strain were found to be statistically significant higher in C (27 +/- 3mm, 0.026 +/- 0.006[mm/N], 13 +/- 2\%) compared to A (21 +/- 4mm, 0.017 +/- 0.005[mm/N], 10 +/- 2\%). No statistically significant differences (p0.05) was found between A and T (25 +/- 5mm, 0.019 +/- 0.004[mm/N], 12 +/- 3\%). During SLVJ, tendon responded differently in regards to age and pathology with children having the most compliant AT. Higher compliance found in healthy tendons might be considered as a protective factor against load-related injuries.}, language = {en} } @article{SchomoellerRischKaplicketal.2021, author = {Schom{\"o}ller, Anne and Risch, Lucie and Kaplick, Hannes and Wochatz, Monique and Engel, Tilman and Schraplau, Anne and Sonnenburg, Dominik and Huppertz, Alexander and Mayer, Frank}, title = {Inter-rater and inter-session reliability of lumbar paraspinal muscle composition in a mobile MRI device}, series = {BJR : an international journal of radiology, radiation oncology and all related sciences / British Institute of Radiology}, volume = {94}, journal = {BJR : an international journal of radiology, radiation oncology and all related sciences / British Institute of Radiology}, number = {1127}, publisher = {Wiley}, address = {Bognor Regis}, issn = {0007-1285}, doi = {10.1259/bjr.20210141}, pages = {6}, year = {2021}, abstract = {Objective: To assess the reliability of measurements of paraspinal muscle transverse relaxation times (T2 times) between two observers and within one observer on different time points.
Methods: 14 participants (9f/5m, 33 +/- 5 years, 176 +/- 10 cm, 73 +/- 12 kg) underwent 2 consecutive MRI scans (M1,M2) on the same day, followed by 1 MRI scan 13-14 days later (M3) in a mobile 1.5 Tesla MRI. T2 times were calculated in T-2 weighted turbo spin- echo-sequences at the spinal level of the third lumbar vertebrae (11 slices, 2 mm slice thickness, 1 mm interslice gap, echo times: 20, 40, 60, 80, 100 ms) for M. erector spinae (ES) and M. multifidius (MF). The following reliability parameter were calculated for the agreement of T2 times between two different investigators (OBS1 \& OBS2) on the same MRI (inter rater reliability, IR) and by one investigator between different MRI of the same participant (intersession variability, IS): Test-Retest Variability (TRV, Differences/Mean*100); Coefficient of Variation (CV, Standard deviation/Mean*100); Bland-Altman Analysis (systematic bias = Mean of the Differences; Upper/Lower Limits of Agreement = Bias+/-1.96*SD); Intraclass Correlation Coefficient 3.1 (ICC) with absolute agreement, as well as its 95\% confidence interval.
Results: Mean TRV for IR was 2.6\% for ES and 4.2\% for MF. Mean TRV for IS was 3.5\% (ES) and 5.1\% (MF). Mean CV for IR was 1.9 (ES) and 3.0 (MF). Mean CV for IS was 2.5\% (ES) and 3.6\% (MF). A systematic bias of 1.3 ms (ES) and 2.1 ms (MF) were detected for IR and a systematic bias of 0.4 ms (ES) and 0.07 ms (MF) for IS. ICC for IR was 0.94 (ES) and 0.87 (MF). ICC for IS was 0.88 (ES) and 0.82 (MF).
Conclusion: Reliable assessment of paraspinal muscle T2 time justifies its use for scientific purposes. The applied technique could be recommended to use for future studies that aim to assess changes of T2 times, e.g. after an intense bout of eccentric exercises.}, language = {en} }