@article{MondalBhuniaKellingetal.2014, author = {Mondal, Suvendu Sekhar and Bhunia, Asamanjoy and Kelling, Alexandra and Schilde, Uwe and Janiak, Christoph and Holdt, Hans-J{\"u}rgen}, title = {A supramolecular Co(II)(14)- metal-organic cube in a hydrogen-bonded network and a Co(II)-organic framework with a flexible methoxy substituent}, series = {Chemical communications}, volume = {50}, journal = {Chemical communications}, number = {41}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1359-7345}, doi = {10.1039/c3cc49698h}, pages = {5441 -- 5443}, year = {2014}, abstract = {The reaction of 4,5-dicyano-2-methoxyimidazole (L1) with Co(NO3)(2.) 6H(2)O under solvothermal conditions in DMF, a MOF, IFP-8 and a hydrogen-bonded network consisting of tetradecanuclear Co(II)(14)-metal organic cube (1) are achieved. 1 shows the bcu net with 14 cobalt atoms.}, language = {en} } @misc{MondalBhuniaKellingetal.2014, author = {Mondal, Suvendu Sekhar and Bhunia, Asamanjoy and Kelling, Alexandra and Schilde, Uwe and Janiak, Christoph and Holdt, Hans-J{\"u}rgen}, title = {A supramolecular Co(II)₁₄-metal-organic cube in a hydrogen-bonded network and a Co(II)-organic framework with a flexible methoxy substituent}, number = {169}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-74098}, pages = {5441 -- 5443}, year = {2014}, abstract = {The reaction of 4,5-dicyano-2-methoxyimidazole (L1) with Co(NO3)2·6H2O under solvothermal conditions in DMF, a MOF, IFP-8 and a hydrogen-bonded network consisting of tetradecanuclear Co(II)14-metal organic cube (1) are achieved. 1 shows the bcu net with 14 cobalt atoms.}, language = {en} } @article{MondalBhuniaKellingetal.2014, author = {Mondal, Suvendu Sekhar and Bhunia, Asamanjoy and Kelling, Alexandra and Schilde, Uwe and Janiak, Christoph and Holdt, Hans-J{\"u}rgen}, title = {A supramolecular Co(II)₁₄-metal-organic cube in a hydrogen-bonded network and a Co(II)-organic framework with a flexible methoxy substituent}, series = {Chemical communications : ChemComm}, volume = {2014}, journal = {Chemical communications : ChemComm}, number = {41}, publisher = {Royal Society of Chemistry}, issn = {2046-2069}, doi = {10.1039/c3cc49698h}, pages = {5441 -- 5443}, year = {2014}, abstract = {The reaction of 4,5-dicyano-2-methoxyimidazole (L1) with Co(NO3)2·6H2O under solvothermal conditions in DMF, a MOF, IFP-8 and a hydrogen-bonded network consisting of tetradecanuclear Co(II)14-metal organic cube (1) are achieved. 1 shows the bcu net with 14 cobalt atoms.}, language = {en} } @misc{MondalBhuniaBaburinetal.2013, author = {Mondal, Suvendu Sekhar and Bhunia, Asamanjoy and Baburin, Igor A. and J{\"a}ger, Christian and Kelling, Alexandra and Schilde, Uwe and Seifert, Gotthard and Janiak, Christoph and Holdt, Hans-J{\"u}rgen}, title = {Gate effects in a hexagonal zinc-imidazolate-4-amide-5-imidate framework with flexible methoxy substituents and CO2 selectivity}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-94341}, pages = {7599 -- 7601}, year = {2013}, abstract = {A new imidazolate-4-amide-5-imidate based MOF, IFP-7, is generated, having flexible methoxy groups, which act as molecular gates for guest molecules. This allows highly selective CO2 sorption over N2 and CH4 gases.}, language = {en} } @article{MondalBhuniaBaburinetal.2013, author = {Mondal, Suvendu Sekhar and Bhunia, Asamanjoy and Baburin, Igor A. and J{\"a}ger, Christian and Kelling, Alexandra and Schilde, Uwe and Seifert, Gotthard and Janiak, Christoph and Holdt, Hans-J{\"u}rgen}, title = {Gate effects in a hexagonal zinc-imidazolate-4-amide-5-imidate framework with flexible methoxy substituents and CO2 selectivity}, series = {Chemical communications}, volume = {49}, journal = {Chemical communications}, number = {69}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1359-7345}, doi = {10.1039/c3cc42156b}, pages = {7599 -- 7601}, year = {2013}, abstract = {A new imidazolate-4-amide-5-imidate based MOF, IFP-7, is generated, having flexible methoxy groups, which act as molecular gates for guest molecules. This allows highly selective CO2 sorption over N-2 and CH4 gases.}, language = {en} } @article{MondalBhuniaBaburinetal.2008, author = {Mondal, Suvendu Sekhar and Bhunia, Asamanjoy and Baburin, Igor A. and J{\"a}ger, Christian and Kelling, Alexandra and Schilde, Uwe and Seiert, Gotthard and Janiak, Christoph and Holdt, Hans-J{\"u}rgen}, title = {Gate effects in a hexagonal zinc-imidazolate-4-amide-5-imidate framework with flexible methoxy substituents and CO2 selectivity}, doi = {10.1039/C3CC42156B}, year = {2008}, abstract = {A new imidazolate-4-amide-5-imidate based MOF, IFP-7, is generated, having flexible methoxy groups, which act as molecular gates for guest molecules. This allows highly selective CO2 sorption over N2 and CH4 gases.}, language = {en} } @article{MondalBhuniaKellingetal.2014, author = {Mondal, Suvendu Sekhar and Bhunia, Asamanjoy and Kelling, Alexandra and Schilde, Uwe and Janiak, Christoph and Holdt, Hans-J{\"u}rgen}, title = {Giant Zn-14 molecular building block in hydrogen-bonded network with permanent porosity for gas uptake}, series = {Journal of the American Chemical Society}, volume = {136}, journal = {Journal of the American Chemical Society}, number = {1}, publisher = {American Chemical Society}, address = {Washington}, issn = {0002-7863}, doi = {10.1021/ja410595q}, pages = {44 -- 47}, year = {2014}, abstract = {In situ imidazolate-4,5-diamide-2-olate linker generation leads to the formation of a [Zn-14(L2)(12)(O)-(OH)(2)(H2O)(4)] molecular building block (MBB) with a Zn-6 octahedron inscribed in a Zn-8 cube. The MBBs connect by amide-amide hydrogen bonds to a 3D robust supramolecular network which can be activated for N-2, CO2, CH4, and H-2 gas sorption.}, language = {en} } @article{AlrefaiMondalWrucketal.2019, author = {Alrefai, Anas and Mondal, Suvendu Sekhar and Wruck, Alexander and Kelling, Alexandra and Schilde, Uwe and Brandt, Philipp and Janiak, Christoph and Schoenfeld, Sophie and Weber, Birgit and Rybakowski, Lawrence and Herrman, Carmen and Brennenstuhl, Katlen and Eidner, Sascha and Kumke, Michael Uwe and Behrens, Karsten and G{\"u}nter, Christina and M{\"u}ller, Holger and Holdt, Hans-J{\"u}rgen}, title = {Hydrogen-bonded supramolecular metal-imidazolate frameworks: gas sorption, magnetic and UV/Vis spectroscopic properties}, series = {Journal of Inclusion Phenomena and Macrocyclic Chemistry}, volume = {94}, journal = {Journal of Inclusion Phenomena and Macrocyclic Chemistry}, number = {3-4}, publisher = {Springer}, address = {Dordrecht}, issn = {1388-3127}, doi = {10.1007/s10847-019-00926-6}, pages = {155 -- 165}, year = {2019}, abstract = {By varying reaction parameters for the syntheses of the hydrogen-bonded metal-imidazolate frameworks (HIF) HIF-1 and HIF-2 (featuring 14 Zn and 14 Co atoms, respectively) to increase their yields and crystallinity, we found that HIF-1 is generated in two different frameworks, named as HIF-1a and HIF-1b. HIF-1b is isostructural to HIF-2. We determined the gas sorption and magnetic properties of HIF-2. In comparison to HIF-1a (Brunauer-Emmett-Teller (BET) surface area of 471m(2) g(-1)), HIF-2 possesses overall very low gas sorption uptake capacities [BET(CO2) surface area=85m(2) g(-1)]. Variable temperature magnetic susceptibility measurement of HIF-2 showed antiferromagnetic exchange interactions between the cobalt(II) high-spin centres at lower temperature. Theoretical analysis by density functional theory confirmed this finding. The UV/Vis-reflection spectra of HIF-1 (mixture of HIF-1a and b), HIF-2 and HIF-3 (with 14 Cd atoms) were measured and showed a characteristic absorption band centered at 340nm, which was indicative for differences in the imidazolate framework.}, language = {en} } @article{MondalDeyAttallahetal.2017, author = {Mondal, Suvendu Sekhar and Dey, Subarna and Attallah, Ahmed G. and Krause-Rehberg, Reinhard and Janiak, Christoph and Holdt, Hans-J{\"u}rgen}, title = {Insights into the pores of microwave-assisted metal-imidazolate frameworks showing enhanced gas sorption}, series = {Dalton transactions : a journal of inorganic chemistry, including bioinorganic, organometallic, and solid-state chemistry}, volume = {46}, journal = {Dalton transactions : a journal of inorganic chemistry, including bioinorganic, organometallic, and solid-state chemistry}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1477-9226}, doi = {10.1039/c7dt00350a}, pages = {4824 -- 4833}, year = {2017}, abstract = {Microwave heating (MW)-assisted synthesis has been widely applied as an alternative method for the chemical synthesis of organic and inorganic materials. In this work, we report MW-assisted synthesis of three isostructural 3D frameworks with a flexible linker arm of the chelating linker 2-substituted imidazolate- 4-amide-5-imidate, named IFP-7-MW (M = Zn, R = OMe), IFP-8-MW (M = Co; R = OMe) and IFP-10-MW (M = Co; R = OEt) (IFP = Imidazolate Framework Potsdam). These chelating ligands were generated in situ by partial hydrolysis of 2-substituted 4,5-dicyanoimidazoles under MW-and also conventional electrical heating (CE)-assisted conditions in DMF. The structure of these materials was determined by IR spectroscopy and powder X-ray diffraction (PXRD) and the identity of the materials synthesized under CE-conditions was established. Materials obtained from MW-heating show many fold enhancement of CO2 and H-2 uptake capacities, compared to the analogous CE-heating method based materials. To understand the inner pore-sizes of IFP structures and variations of gas sorptions, we performed positron annihilation lifetime spectroscopy (PALS), which shows that MW-assisted materials have smaller pore sizes than materials synthesized under CE-conditions. The "kinetically controlled" MW-synthesized material has an inherent ability to trap extra linkers, thereby reducing the pore sizes of CE-materials to ultra/micropores. These ultramicropores are responsible for high gas sorption.}, language = {en} } @article{MarquardtXieTaubertetal.2011, author = {Marquardt, Dorothea and Xie, Zailai and Taubert, Andreas and Thomann, Ralf and Janiak, Christoph}, title = {Microwave synthesis and inherent stabilization of metal nanoparticles in 1-methyl-3-(3-carboxyethyl)-imidazolium tetrafluoroborate}, series = {Dalton transactions : a journal of inorganic chemistry, including bioinorganic, organometallic, and solid-state chemistry}, volume = {40}, journal = {Dalton transactions : a journal of inorganic chemistry, including bioinorganic, organometallic, and solid-state chemistry}, number = {33}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1477-9226}, doi = {10.1039/c1dt10795j}, pages = {8290 -- 8293}, year = {2011}, abstract = {The synthesis of Co-NPs and Mn-NPs by microwave-induced decomposition of the metal carbonyls Co-2(CO)(8) and Mn-2(CO)(10), respectively, yields smaller and better separated particles in the functionalized IL 1-methyl-3-(3-carboxyethyl)-imidazolium tetrafluoroborate [EmimCO(2)H][BF4] (1.6 +/- 0.3 nm and 4.3 +/- 1.0 nm, respectively) than in the non-functionalized IL 1-n-butyl-3-methylimidazolium tetrafluoroborate [Bmim][BF4]. The particles are stable in the absence of capping ligands (surfactants) for more than six months although some variation in particle size could be observed by TEM.}, language = {en} }