@article{MolnosMamdouhPetrietal.2017, author = {Molnos, Sonja and Mamdouh, Tarek and Petri, Stefan and Nocke, Thomas and Weinkauf, Tino and Coumou, Dim}, title = {A network-based detection scheme for the jet stream core}, series = {Earth system dynamics}, volume = {8}, journal = {Earth system dynamics}, number = {1}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {2190-4979}, doi = {10.5194/esd-8-75-2017}, pages = {75 -- 89}, year = {2017}, abstract = {The polar and subtropical jet streams are strong upper-level winds with a crucial influence on weather throughout the Northern Hemisphere midlatitudes. In particular, the polar jet is located between cold arctic air to the north and warmer subtropical air to the south. Strongly meandering states therefore often lead to extreme surface weather. The parameter values of the detection scheme are optimized using simulated annealing and a skill function that accounts for the zonal-mean jet stream position (Rikus, 2015). After the successful optimization process, we apply our scheme to reanalysis data covering 1979-2015 and calculate seasonal-mean probabilistic maps and trends in wind strength and position of jet streams. We present longitudinally defined probability distributions of the positions for both jets for all on the Northern Hemisphere seasons. This shows that winter is characterized by two well-separated jets over Europe and Asia (ca. 20 degrees W to 140 degrees E). In contrast, summer normally has a single merged jet over the western hemisphere but can have both merged and separated jet states in the eastern hemisphere.}, language = {en} } @misc{MolnosMamdouhPetrietal.2017, author = {Molnos, Sonja and Mamdouh, Tarek and Petri, Stefan and Nocke, Thomas and Weinkauf, Tino and Coumou, Dim}, title = {A network-based detection scheme for the jet stream core}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {625}, issn = {1866-8372}, doi = {10.25932/publishup-41909}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-419099}, pages = {75 -- 89}, year = {2017}, abstract = {The polar and subtropical jet streams are strong upper-level winds with a crucial influence on weather throughout the Northern Hemisphere midlatitudes. In particular, the polar jet is located between cold arctic air to the north and warmer subtropical air to the south. Strongly meandering states therefore often lead to extreme surface weather. Some algorithms exist which can detect the 2-D (latitude and longitude) jets' core around the hemisphere, but all of them use a minimal threshold to determine the subtropical and polar jet stream. This is particularly problematic for the polar jet stream, whose wind velocities can change rapidly from very weak to very high values and vice versa. We develop a network-based scheme using Dijkstra's shortest-path algorithm to detect the polar and subtropical jet stream core. This algorithm not only considers the commonly used wind strength for core detection but also takes wind direction and climatological latitudinal position into account. Furthermore, it distinguishes between polar and subtropical jet, and between separate and merged jet states. The parameter values of the detection scheme are optimized using simulated annealing and a skill function that accounts for the zonal-mean jet stream position (Rikus, 2015). After the successful optimization process, we apply our scheme to reanalysis data covering 1979-2015 and calculate seasonal-mean probabilistic maps and trends in wind strength and position of jet streams. We present longitudinally defined probability distributions of the positions for both jets for all on the Northern Hemisphere seasons. This shows that winter is characterized by two well-separated jets over Europe and Asia (ca. 20 degrees W to 140 degrees E). In contrast, summer normally has a single merged jet over the western hemisphere but can have both merged and separated jet states in the eastern hemisphere. With this algorithm it is possible to investigate the position of the jets' cores around the hemisphere and it is therefore very suitable to analyze jet stream patterns in observations and models, enabling more advanced model-validation.}, language = {en} } @article{DiCapuaCoumou2016, author = {Di Capua, Giorgia and Coumou, Dim}, title = {Changes in meandering of the Northern Hemisphere circulation}, series = {Environmental research letters}, volume = {11}, journal = {Environmental research letters}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1748-9326}, doi = {10.1088/1748-9326/11/9/094028}, pages = {9}, year = {2016}, abstract = {Strong waves in the mid-latitude circulation have been linked to extreme surface weather and thus changes in waviness could have serious consequences for society. Several theories have been proposed which could alter waviness, including tropical sea surface temperature anomalies or rapid climate change in the Arctic. However, so far it remains unclear whether any changes in waviness have actually occurred. Here we propose a novel meandering index which captures the maximum waviness in geopotential height contours at any given day, using all information of the full spatial position of each contour. Data are analysed on different time scale (from daily to 11 day running means) and both on hemispheric and regional scales. Using quantile regressions, we analyse how seasonal distributions of this index have changed over 1979-2015. The most robust changes are detected for autumn which has seen a pronounced increase in strongly meandering patterns at the hemispheric level as well as over the Eurasian sector. In summer for both the hemisphere and the Eurasian sector, significant downward trends in meandering are detected on daily timescales which is consistent with the recently reported decrease in summer storm track activity. The American sector shows the strongest increase in meandering in the warm season: in particular for 11 day running mean data, indicating enhanced amplitudes of quasi-stationary waves. Our findings have implications for both the occurrence of recent cold spells and persistent heat waves in the mid-latitudes.}, language = {en} } @article{KretschmerRungeCoumou2017, author = {Kretschmer, Marlene and Runge, Jakob and Coumou, Dim}, title = {Early prediction of extreme stratospheric polar vortex states based on causal precursors}, series = {Geophysical research letters}, volume = {44}, journal = {Geophysical research letters}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0094-8276}, doi = {10.1002/2017GL074696}, pages = {8592 -- 8600}, year = {2017}, abstract = {Variability in the stratospheric polar vortex (SPV) can influence the tropospheric circulation and thereby winter weather. Early predictions of extreme SPV states are thus important to improve forecasts of winter weather including cold spells. However, dynamical models are usually restricted in lead time because they poorly capture low-frequency processes. Empirical models often suffer from overfitting problems as the relevant physical processes and time lags are often not well understood. Here we introduce a novel empirical prediction method by uniting a response-guided community detection scheme with a causal discovery algorithm. This way, we objectively identify causal precursors of the SPV at subseasonal lead times and find them to be in good agreement with known physical drivers. A linear regression prediction model based on the causal precursors can explain most SPV variability (r(2)=0.58), and our scheme correctly predicts 58\% (46\%) of extremely weak SPV states for lead times of 1-15 (16-30)days with false-alarm rates of only approximately 5\%. Our method can be applied to any variable relevant for (sub)seasonal weather forecasts and could thus help improving long-lead predictions.}, language = {en} } @article{KornhuberPetoukhovPetrietal.2016, author = {Kornhuber, Kai and Petoukhov, Vladimir and Petri, Stefan and Rahmstorf, Stefan and Coumou, Dim}, title = {Evidence for wave resonance as a key mechanism for generating high-amplitude quasi-stationary waves in boreal summer}, series = {Climate dynamics : observational, theoretical and computational research on the climate system}, volume = {49}, journal = {Climate dynamics : observational, theoretical and computational research on the climate system}, publisher = {Springer}, address = {New York}, issn = {0930-7575}, doi = {10.1007/s00382-016-3399-6}, pages = {1961 -- 1979}, year = {2016}, abstract = {Several recent northern hemisphere summer extremes have been linked to persistent high-amplitude wave patterns (e.g. heat waves in Europe 2003, Russia 2010 and in the US 2011, Floods in Pakistan 2010 and Europe 2013). Recently quasi-resonant amplification (QRA) was proposed as a mechanism that, when certain dynamical conditions are fulfilled, can lead to such high-amplitude wave events. Based on these resonance conditions a detection scheme to scan reanalysis data for QRA events in boreal summer months was implemented. With this objective detection scheme we analyzed the occurrence and duration of QRA events and the associated atmospheric flow patterns in 1979-2015 reanalysis data. We detect a total number of 178 events for wave 6, 7 and 8 and find that during roughly one-third of all high amplitude events QRA conditions were met for respective waves. Our analysis reveals a significant shift for quasi-stationary waves 6 and 7 towards high amplitudes during QRA events, lagging first QRA-detection by typically one week. The results provide further evidence for the validity of the QRA hypothesis and its important role in generating high amplitude waves in boreal summer.}, language = {en} } @article{TotzPetriLehmannetal.2019, author = {Totz, Sonja Juliana and Petri, Stefan and Lehmann, Jascha and Peukert, Erik and Coumou, Dim}, title = {Exploring the sensitivity of Northern Hemisphere atmospheric circulation to different surface temperature forcing using a statistical-dynamical atmospheric model}, series = {Nonlinear processes in geophysics}, volume = {26}, journal = {Nonlinear processes in geophysics}, number = {1}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1023-5809}, doi = {10.5194/npg-26-1-2019}, pages = {1 -- 12}, year = {2019}, abstract = {Climate and weather conditions in the mid-latitudes are strongly driven by the large-scale atmosphere circulation. Observational data indicate that important components of the large-scale circulation have changed in recent decades, including the strength and the width of the Hadley cell, jets, storm tracks and planetary waves. Here, we use a new statistical-dynamical atmosphere model (SDAM) to test the individual sensitivities of the large-scale atmospheric circulation to changes in the zonal temperature gradient, meridional temperature gradient and global-mean temperature. We analyze the Northern Hemisphere Hadley circulation, jet streams, storm tracks and planetary waves by systematically altering the zonal temperature asymmetry, the meridional temperature gradient and the global-mean temperature. Our results show that the strength of the Hadley cell, storm tracks and jet streams depend, in terms of relative changes, almost linearly on both the global-mean temperature and the meridional temperature gradient, whereas the zonal temperature asymmetry has little or no influence. The magnitude of planetary waves is affected by all three temperature components, as expected from theoretical dynamical considerations. The width of the Hadley cell behaves nonlinearly with respect to all three temperature components in the SDAM. Moreover, some of these observed large-scale atmospheric changes are expected from dynamical equations and are therefore an important part of model validation.}, language = {en} } @article{LehmannCoumouFrieleretal.2014, author = {Lehmann, Jascha and Coumou, Dim and Frieler, Katja and Eliseev, Alexey V. and Levermann, Anders}, title = {Future changes in extratropical storm tracks and baroclinicity under climate change}, series = {Environmental research letters}, volume = {9}, journal = {Environmental research letters}, number = {8}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1748-9326}, doi = {10.1088/1748-9326/9/8/084002}, pages = {8}, year = {2014}, abstract = {The weather in Eurasia, Australia, and North and South America is largely controlled by the strength and position of extratropical storm tracks. Future climate change will likely affect these storm tracks and the associated transport of energy, momentum, and water vapour. Many recent studies have analyzed how storm tracks will change under climate change, and how these changes are related to atmospheric dynamics. However, there are still discrepancies between different studies on how storm tracks will change under future climate scenarios. Here, we show that under global warming the CMIP5 ensemble of coupled climate models projects only little relative changes in vertically averaged mid-latitude mean storm track activity during the northern winter, but agree in projecting a substantial decrease during summer. Seasonal changes in the Southern Hemisphere show the opposite behaviour, with an intensification in winter and no change during summer. These distinct seasonal changes in northern summer and southern winter storm tracks lead to an amplified seasonal cycle in a future climate. Similar changes are seen in the mid-latitude mean Eady growth rate maximum, a measure that combines changes in vertical shear and static stability based on baroclinic instability theory. Regression analysis between changes in the storm tracks and changes in the maximum Eady growth rate reveal that most models agree in a positive association between the two quantities over mid-latitude regions.}, language = {en} } @article{LehmannCoumouFrieler2015, author = {Lehmann, Jascha and Coumou, Dim and Frieler, Katja}, title = {Increased record-breaking precipitation events under global warming}, series = {Climatic change : an interdisciplinary, intern. journal devoted to the description, causes and implications of climatic change}, volume = {132}, journal = {Climatic change : an interdisciplinary, intern. journal devoted to the description, causes and implications of climatic change}, number = {4}, publisher = {Springer}, address = {Dordrecht}, issn = {0165-0009}, doi = {10.1007/s10584-015-1434-y}, pages = {501 -- 515}, year = {2015}, abstract = {In the last decade record-breaking rainfall events have occurred in many places around the world causing severe impacts to human society and the environment including agricultural losses and floodings. There is now medium confidence that human-induced greenhouse gases have contributed to changes in heavy precipitation events at the global scale. Here, we present the first analysis of record-breaking daily rainfall events using observational data. We show that over the last three decades the number of record-breaking events has significantly increased in the global mean. Globally, this increase has led to 12 \% more record-breaking rainfall events over 1981-2010 compared to those expected in stationary time series. The number of record-breaking rainfall events peaked in 2010 with an estimated 26 \% chance that a new rainfall record is due to long-term climate change. This increase in record-breaking rainfall is explained by a statistical model which accounts for the warming of air and associated increasing water holding capacity only. Our results suggest that whilst the number of rainfall record-breaking events can be related to natural multi-decadal variability over the period from 1901 to 1980, observed record-breaking rainfall events significantly increased afterwards consistent with rising temperatures.}, language = {en} } @misc{LehmannCoumouFrieler2015, author = {Lehmann, Jascha and Coumou, Dim and Frieler, Katja}, title = {Increased record-breaking precipitation events under global warming (vol 132, pg 501, 2015)}, series = {Climatic change : an interdisciplinary, intern. journal devoted to the description, causes and implications of climatic change}, volume = {132}, journal = {Climatic change : an interdisciplinary, intern. journal devoted to the description, causes and implications of climatic change}, number = {4}, publisher = {Springer}, address = {Dordrecht}, issn = {0165-0009}, doi = {10.1007/s10584-015-1466-3}, pages = {517 -- 518}, year = {2015}, language = {en} } @article{KretschmerCoumouAgeletal.2018, author = {Kretschmer, Marlene and Coumou, Dim and Agel, Laurie and Barlow, Mathew and Tziperman, Eli and Cohen, Judah}, title = {More-Persistent weak stratospheric polar vortex states linked to cold extremes}, series = {Bulletin of the American Meteorological Society}, volume = {99}, journal = {Bulletin of the American Meteorological Society}, number = {1}, publisher = {American Meteorological Soc.}, address = {Boston}, issn = {0003-0007}, doi = {10.1175/BAMS-D-16-0259.1}, pages = {49 -- 60}, year = {2018}, abstract = {The extratropical stratosphere in boreal winter is characterized by a strong circumpolar westerly jet, confining the coldest temperatures at high latitudes. The jet, referred to as the stratospheric polar vortex, is predominantly zonal and centered around the pole; however, it does exhibit large variability in wind speed and location. Previous studies showed that a weak stratospheric polar vortex can lead to cold-air outbreaks in the midlatitudes, but the exact relationships and mechanisms are unclear. Particularly, it is unclear whether stratospheric variability has contributed to the observed anomalous cooling trends in midlatitude Eurasia. Using hierarchical clustering, we show that over the last 37 years, the frequency of weak vortex states in mid- to late winter (January and February) has increased, which was accompanied by subsequent cold extremes in midlatitude Eurasia. For this region, 60\% of the observed cooling in the era of Arctic amplification, that is, since 1990, can be explained by the increased frequency of weak stratospheric polar vortex states, a number that increases to almost 80\% when El Nino-Southern Oscillation (ENSO) variability is included as well.}, language = {en} }