@article{Buerger2022, author = {B{\"u}rger, Gerd}, title = {A conundrum of trends}, series = {Journal of hydrology}, volume = {609}, journal = {Journal of hydrology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0022-1694}, doi = {10.1016/j.jhydrol.2022.127745}, pages = {3}, year = {2022}, abstract = {This comment is meant to reiterate two warnings: One applies to the uncritical use of ready-made (openly available) program packages, and one to the estimation of trends in serially correlated time series. Both warnings apply to the recent publication of Lischeid et al. about lake-level trends in Germany.}, language = {en} } @article{Buerger2018, author = {B{\"u}rger, Gerd}, title = {A counterexample to decomposing climate shifts and trends by weather types}, series = {International Journal of Climatology}, volume = {38}, journal = {International Journal of Climatology}, number = {9}, publisher = {Wiley}, address = {Hoboken}, issn = {0899-8418}, doi = {10.1002/joc.5519}, pages = {3732 -- 3735}, year = {2018}, abstract = {The literature contains a sizable number of publications where weather types are used to decompose climate shifts or trends into contributions of frequency and mean of those types. They are all based on the product rule, that is, a transformation of a product of sums into a sum of products, the latter providing the decomposition. While there is nothing to argue about the transformation itself, its interpretation as a climate shift or trend decomposition is bound to fail. While the case of a climate shift may be viewed as an incomplete description of a more complex behaviour, trend decomposition indeed produces bogus trends, as demonstrated by a synthetic counterexample with well-defined trends in type frequency and mean. Consequently, decompositions based on that transformation, be it for climate shifts or trends, must not be used.}, language = {en} } @article{Buerger2019, author = {B{\"u}rger, Gerd}, title = {A seamless filter for daily to seasonal forecasts, with applications to Iran and Brazil}, series = {Quarterly Journal of the Royal Meteorological Society}, volume = {146}, journal = {Quarterly Journal of the Royal Meteorological Society}, number = {726}, publisher = {WILEY-VCH}, address = {Weinheim}, pages = {14}, year = {2019}, abstract = {A digital filter is introduced which treats the problem of predictability versus time averaging in a continuous, seamless manner. This seamless filter (SF) is characterized by a unique smoothing rule that determines the strength of smoothing in dependence on lead time. The rule needs to be specified beforehand, either by expert knowledge or by user demand. As a result, skill curves are obtained that allow a predictability assessment across a whole range of time-scales, from daily to seasonal, in a uniform manner. The SF is applied to downscaled SEAS5 ensemble forecasts for two focus regions in or near the tropical belt, the river basins of the Karun in Iran and the Sao Francisco in Brazil. Both are characterized by strong seasonality and semi-aridity, so that predictability across various time-scales is in high demand. Among other things, it is found that from the start of the water year (autumn), areal precipitation is predictable with good skill for the Karun basin two and a half months ahead; for the Sao Francisco it is only one month, longer-term prediction skill is just above the critical level.}, language = {en} } @misc{Buerger2019, author = {B{\"u}rger, Gerd}, title = {A seamless filter for daily to seasonal forecasts, with applications to Iran and Brazil}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {726}, issn = {1866-8372}, doi = {10.25932/publishup-52383}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-523835}, pages = {16}, year = {2019}, abstract = {A digital filter is introduced which treats the problem of predictability versus time averaging in a continuous, seamless manner. This seamless filter (SF) is characterized by a unique smoothing rule that determines the strength of smoothing in dependence on lead time. The rule needs to be specified beforehand, either by expert knowledge or by user demand. As a result, skill curves are obtained that allow a predictability assessment across a whole range of time-scales, from daily to seasonal, in a uniform manner. The SF is applied to downscaled SEAS5 ensemble forecasts for two focus regions in or near the tropical belt, the river basins of the Karun in Iran and the Sao Francisco in Brazil. Both are characterized by strong seasonality and semi-aridity, so that predictability across various time-scales is in high demand. Among other things, it is found that from the start of the water year (autumn), areal precipitation is predictable with good skill for the Karun basin two and a half months ahead; for the Sao Francisco it is only one month, longer-term prediction skill is just above the critical level.}, language = {en} } @misc{MurawskiBuergerVorogushynetal.2016, author = {Murawski, Aline and B{\"u}rger, Gerd and Vorogushyn, Sergiy and Merz, Bruno}, title = {Can local climate variability be explained by weather patterns?}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {525}, issn = {1866-8372}, doi = {10.25932/publishup-41015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-410155}, pages = {24}, year = {2016}, abstract = {To understand past flood changes in the Rhine catchment and in particular the role of anthropogenic climate change in extreme flows, an attribution study relying on a proper GCM (general circulation model) downscaling is needed. A downscaling based on conditioning a stochastic weather generator on weather patterns is a promising approach. This approach assumes a strong link between weather patterns and local climate, and sufficient GCM skill in reproducing weather pattern climatology. These presuppositions are unprecedentedly evaluated here using 111 years of daily climate data from 490 stations in the Rhine basin and comprehensively testing the number of classification parameters and GCM weather pattern characteristics. A classification based on a combination of mean sea level pressure, temperature, and humidity from the ERA20C reanalysis of atmospheric fields over central Europe with 40 weather types was found to be the most appropriate for stratifying six local climate variables. The corresponding skill is quite diverse though, ranging from good for radiation to poor for precipitation. Especially for the latter it was apparent that pressure fields alone cannot sufficiently stratify local variability. To test the skill of the latest generation of GCMs from the CMIP5 ensemble in reproducing the frequency, seasonality, and persistence of the derived weather patterns, output from 15 GCMs is evaluated. Most GCMs are able to capture these characteristics well, but some models showed consistent deviations in all three evaluation criteria and should be excluded from further attribution analysis.}, language = {en} } @article{MurawskiBuergerVorogushynetal.2016, author = {Murawski, Aline and B{\"u}rger, Gerd and Vorogushyn, Sergiy and Merz, Bruno}, title = {Can local climate variability be explained by weather patterns? A multi-station evaluation for the Rhine basin}, series = {Hydrology and earth system sciences : HESS}, volume = {20}, journal = {Hydrology and earth system sciences : HESS}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1027-5606}, doi = {10.5194/hess-20-4283-2016}, pages = {4283 -- 4306}, year = {2016}, abstract = {To understand past flood changes in the Rhine catchment and in particular the role of anthropogenic climate change in extreme flows, an attribution study relying on a proper GCM (general circulation model) downscaling is needed. A downscaling based on conditioning a stochastic weather generator on weather patterns is a promising approach. This approach assumes a strong link between weather patterns and local climate, and sufficient GCM skill in reproducing weather pattern climatology. These presuppositions are unprecedentedly evaluated here using 111 years of daily climate data from 490 stations in the Rhine basin and comprehensively testing the number of classification parameters and GCM weather pattern characteristics. A classification based on a combination of mean sea level pressure, temperature, and humidity from the ERA20C reanalysis of atmospheric fields over central Europe with 40 weather types was found to be the most appropriate for stratifying six local climate variables. The corresponding skill is quite diverse though, ranging from good for radiation to poor for precipitation. Especially for the latter it was apparent that pressure fields alone cannot sufficiently stratify local variability. To test the skill of the latest generation of GCMs from the CMIP5 ensemble in reproducing the frequency, seasonality, and persistence of the derived weather patterns, output from 15 GCMs is evaluated. Most GCMs are able to capture these characteristics well, but some models showed consistent deviations in all three evaluation criteria and should be excluded from further attribution analysis.}, language = {en} } @article{DidovetsKrysanovaBuergeretal.2019, author = {Didovets, Iulii and Krysanova, Valentina and B{\"u}rger, Gerd and Snizhko, Sergiy and Balabukh, Vira and Bronstert, Axel}, title = {Climate change impact on regional floods in the Carpathian region}, series = {Journal of hydrology : Regional studies}, volume = {22}, journal = {Journal of hydrology : Regional studies}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2214-5818}, doi = {10.1016/j.ejrh.2019.01.002}, pages = {14}, year = {2019}, abstract = {Study region: Tisza and Prut catchments, originating on the slopes of the Carpathian mountains. Study focus: The study reported here investigates (i) climate change impacts on flood risk in the region, and (ii) uncertainty related to hydrological modelling, downscaling techniques and climate projections. The climate projections used in the study were derived from five GCMs, downscaled either dynamically with RCMs or with the statistical downscaling model XDS. The resulting climate change scenarios were applied to drive the eco-hydrological model SWIM, which was calibrated and validated for the catchments in advance using observed climate and hydrological data. The changes in the 30-year flood hazards and 98 and 95 percentiles of discharge were evaluated for the far future period (2071-2100) in comparison with the reference period (1981-2010). New hydrological insights for the region: The majority of model outputs under RCP 4.5 show a small to strong increase of the 30-year flood level in the Tisza ranging from 4.5\% to 62\%, and moderate increase in the Prut ranging from 11\% to 22\%. The impact results under RCP 8.5 are more uncertain with changes in both directions due to high uncertainties in GCM-RCM climate projections, downscaling methods and the low density of available climate stations.}, language = {en} } @article{MenzelNiehoffBuergeretal.2002, author = {Menzel, Lucas and Niehoff, Daniel and B{\"u}rger, Gerd and Bronstert, Axel}, title = {Climate change impacts on river flooding : a modelling study of three meso-scale catchments}, year = {2002}, language = {en} } @unpublished{Buerger2014, author = {B{\"u}rger, Gerd}, title = {Comment on "Bias correction, quantile mapping, and downscaling: revisiting the inflation issue"}, series = {Journal of climate}, volume = {27}, journal = {Journal of climate}, number = {4}, publisher = {American Meteorological Soc.}, address = {Boston}, issn = {0894-8755}, doi = {10.1175/JCLI-D-13-00184.1}, pages = {1819 -- 1820}, year = {2014}, abstract = {In a recent paper, Maraun describes the adverse effects of quantile mapping on downscaling. He argues that when large-scale GCM variables are rescaled directly to small-scale fields or even station data, genuine small-scale covariability is lost and replaced by uniform variability inherited from the larger scales. This leads to a misrepresentation mainly of areal means and long-term trends. This comment acknowledges the former point, although the argument is relatively old, but disagrees with the latter, showing that grid-size long-term trends can be different from local trends. Finally, because it is partly incorrectly addressed, some clarification is added regarding the inflation issue, stressing that neither randomization nor inflation is free of unverified assumptions.}, language = {en} } @article{MurawskiVorogushynBuergeretal.2018, author = {Murawski, Aline and Vorogushyn, Sergiy and B{\"u}rger, Gerd and Gerlitz, Lars and Merz, Bruno}, title = {Do changing weather types explain observed climatic trends in the rhine basin?}, series = {Journal of geophysical of geophysical research-atmosheres}, volume = {123}, journal = {Journal of geophysical of geophysical research-atmosheres}, number = {3}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-897X}, doi = {10.1002/2017JD026654}, pages = {1562 -- 1584}, year = {2018}, abstract = {For attributing hydrological changes to anthropogenic climate change, catchment models are driven by climate model output. A widespread approach to bridge the spatial gap between global climate and hydrological catchment models is to use a weather generator conditioned on weather patterns (WPs). This approach assumes that changes in local climate are characterized by between-type changes of patterns. In this study we test this assumption by analyzing a previously developed WP classification for the Rhine basin, which is based on dynamic and thermodynamic variables. We quantify changes in pattern characteristics and associated climatic properties. The amount of between- and within-type changes is investigated by comparing observed trends to trends resulting solely from WP occurrence. To overcome uncertainties in trend detection resulting from the selected time period, all possible periods in 1901-2010 with a minimum length of 31 years are analyzed. Increasing frequency is found for some patterns associated with high precipitation, although the trend sign highly depends on the considered period. Trends and interannual variations of WP frequencies are related to the long-term variability of large-scale circulation modes. Long-term WP internal warming is evident for summer patterns and enhanced warming for spring/autumn patterns since the 1970s. Observed trends in temperature and partly in precipitation are mainly associated with frequency changes of specific WPs, but some amount of within-type changes remains. The classification can be used for downscaling of past changes considering this limitation, but the inclusion of thermodynamic variables into the classification impedes the downscaling of future climate projections.}, language = {en} }