@phdthesis{Bergner2011, author = {Bergner, Andr{\´e}}, title = {Synchronization in complex systems with multiple time scales}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-53407}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {In the present work synchronization phenomena in complex dynamical systems exhibiting multiple time scales have been analyzed. Multiple time scales can be active in different manners. Three different systems have been analyzed with different methods from data analysis. The first system studied is a large heterogenous network of bursting neurons, that is a system with two predominant time scales, the fast firing of action potentials (spikes) and the burst of repetitive spikes followed by a quiescent phase. This system has been integrated numerically and analyzed with methods based on recurrence in phase space. An interesting result are the different transitions to synchrony found in the two distinct time scales. Moreover, an anomalous synchronization effect can be observed in the fast time scale, i.e. there is range of the coupling strength where desynchronization occurs. The second system analyzed, numerically as well as experimentally, is a pair of coupled CO₂ lasers in a chaotic bursting regime. This system is interesting due to its similarity with epidemic models. We explain the bursts by different time scales generated from unstable periodic orbits embedded in the chaotic attractor and perform a synchronization analysis of these different orbits utilizing the continuous wavelet transform. We find a diverse route to synchrony of these different observed time scales. The last system studied is a small network motif of limit cycle oscillators. Precisely, we have studied a hub motif, which serves as elementary building block for scale-free networks, a type of network found in many real world applications. These hubs are of special importance for communication and information transfer in complex networks. Here, a detailed study on the mechanism of synchronization in oscillatory networks with a broad frequency distribution has been carried out. In particular, we find a remote synchronization of nodes in the network which are not directly coupled. We also explain the responsible mechanism and its limitations and constraints. Further we derive an analytic expression for it and show that information transmission in pure phase oscillators, such as the Kuramoto type, is limited. In addition to the numerical and analytic analysis an experiment consisting of electrical circuits has been designed. The obtained results confirm the former findings.}, language = {en} } @phdthesis{Zemanova2007, author = {Zemanov{\´a}, Lucia}, title = {Structure-function relationship in hierarchical model of brain networks}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-18400}, school = {Universit{\"a}t Potsdam}, year = {2007}, abstract = {The mammalian brain is, with its numerous neural elements and structured complex connectivity, one of the most complex systems in nature. Recently, large-scale corticocortical connectivities, both structural and functional, have received a great deal of research attention, especially using the approach of complex networks. Here, we try to shed some light on the relationship between structural and functional connectivities by studying synchronization dynamics in a realistic anatomical network of cat cortical connectivity. We model the cortical areas by a subnetwork of interacting excitable neurons (multilevel model) and by a neural mass model (population model). With weak couplings, the multilevel model displays biologically plausible dynamics and the synchronization patterns reveal a hierarchical cluster organization in the network structure. We can identify a group of brain areas involved in multifunctional tasks by comparing the dynamical clusters to the topological communities of the network. With strong couplings of multilevel model and by using neural mass model, the dynamics are characterized by well-defined oscillations. The synchronization patterns are mainly determined by the node intensity (total input strengths of a node); the detailed network topology is of secondary importance. The biologically improved multilevel model exhibits similar dynamical patterns in the two regimes. Thus, the study of synchronization in a multilevel complex network model of cortex can provide insights into the relationship between network topology and functional organization of complex brain networks.}, language = {en} } @phdthesis{Toenjes2007, author = {T{\"o}njes, Ralf}, title = {Pattern formation through synchronization in systems of nonidentical autonomous oscillators}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-15973}, school = {Universit{\"a}t Potsdam}, year = {2007}, abstract = {This work is concerned with the spatio-temporal structures that emerge when non-identical, diffusively coupled oscillators synchronize. It contains analytical results and their confirmation through extensive computer simulations. We use the Kuramoto model which reduces general oscillatory systems to phase dynamics. The symmetry of the coupling plays an important role for the formation of patterns. We have studied the ordering influence of an asymmetry (non-isochronicity) in the phase coupling function on the phase profile in synchronization and the intricate interplay between this asymmetry and the frequency heterogeneity in the system. The thesis is divided into three main parts. Chapter 2 and 3 introduce the basic model of Kuramoto and conditions for stable synchronization. In Chapter 4 we characterize the phase profiles in synchronization for various special cases and in an exponential approximation of the phase coupling function, which allows for an analytical treatment. Finally, in the third part (Chapter 5) we study the influence of non-isochronicity on the synchronization frequency in continuous, reaction diffusion systems and discrete networks of oscillators.}, language = {en} } @phdthesis{Allefeld2004, author = {Allefeld, Carsten}, title = {Phase synchronization analysis of event-related brain potentials in language processing}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0001873}, school = {Universit{\"a}t Potsdam}, year = {2004}, abstract = {Das Forschungsthema Synchronisation bildet einen Schnittpunkt von Nichtlinearer Dynamik und Neurowissenschaft. So hat zum einen neurobiologische Forschung gezeigt, daß die Synchronisation neuronaler Aktivit{\"a}t einen wesentlichen Aspekt der Funktionsweise des Gehirns darstellt. Zum anderen haben Fortschritte in der physikalischen Theorie zur Entdeckung des Ph{\"a}nomens der Phasensynchronisation gef{\"u}hrt. Eine dadurch motivierte Datenanalysemethode, die Phasensynchronisations-Analyse, ist bereits mit Erfolg auf empirische Daten angewandt worden. Die vorliegende Dissertation kn{\"u}pft an diese konvergierenden Forschungslinien an. Ihren Gegenstand bilden methodische Beitr{\"a}ge zur Fortentwicklung der Phasensynchronisations-Analyse, sowie deren Anwendung auf ereigniskorrelierte Potentiale, eine besonders in den Kognitionswissenschaften wichtige Form von EEG-Daten. Die methodischen Beitr{\"a}ge dieser Arbeit bestehen zum ersten in einer Reihe spezialisierter statistischer Tests auf einen Unterschied der Synchronisationsst{\"a}rke in zwei verschiedenen Zust{\"a}nden eines Systems zweier Oszillatoren. Zweitens wird im Hinblick auf den viel-kanaligen Charakter von EEG-Daten ein Ansatz zur multivariaten Phasensynchronisations-Analyse vorgestellt. Zur empirischen Untersuchung neuronaler Synchronisation wurde ein klassisches Experiment zur Sprachverarbeitung repliziert, in dem der Effekt einer semantischen Verletzung im Satzkontext mit demjenigen der Manipulation physischer Reizeigenschaften (Schriftfarbe) verglichen wird. Hier zeigt die Phasensynchronisations-Analyse eine Verringerung der globalen Synchronisationsst{\"a}rke f{\"u}r die semantische Verletzung sowie eine Verst{\"a}rkung f{\"u}r die physische Manipulation. Im zweiten Fall l{\"a}ßt sich der global beobachtete Synchronisationseffekt mittels der multivariaten Analyse auf die Interaktion zweier symmetrisch gelegener Gehirnareale zur{\"u}ckf{\"u}hren. Die vorgelegten Befunde zeigen, daß die physikalisch motivierte Methode der Phasensynchronisations-Analyse einen wesentlichen Beitrag zur Untersuchung ereigniskorrelierter Potentiale in den Kognitionswissenschaften zu leisten vermag.}, language = {en} } @phdthesis{Rosenblum2003, author = {Rosenblum, Michael}, title = {Phase synchronization of chaotic systems : from theory to experimental applications}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0000682}, school = {Universit{\"a}t Potsdam}, year = {2003}, abstract = {In einem klassischen Kontext bedeutet Synchronisierung die Anpassung der Rhythmen von selbst-erregten periodischen Oszillatoren aufgrund ihrer schwachen Wechselwirkung. Der Begriff der Synchronisierung geht auf den ber{\"u}hmten niederl{\"a}andischen Wissenschaftler Christiaan Huygens im 17. Jahrhundert zur{\"u}ck, der {\"u}ber seine Beobachtungen mit Pendeluhren berichtete. Wenn zwei solche Uhren auf der selben Unterlage plaziert wurden, schwangen ihre Pendel in perfekter {\"U}bereinstimmung. Mathematisch bedeutet das, daß infolge der Kopplung, die Uhren mit gleichen Frequenzen und engverwandten Phasen zu oszillieren begannen. Als wahrscheinlich {\"a}ltester beobachteter nichtlinearer Effekt wurde die Synchronisierung erst nach den Arbeiten von E. V. Appleton und B. Van der Pol gegen 1920 verstanden, die die Synchronisierung in Triodengeneratoren systematisch untersucht haben. Seitdem wurde die Theorie gut entwickelt, und hat viele Anwendungen gefunden. Heutzutage weiss man, dass bestimmte, sogar ziemlich einfache, Systeme, ein chaotisches Verhalten aus{\"u}ben k{\"o}nnen. Dies bedeutet, dass ihre Rhythmen unregelm{\"a}ßig sind und nicht durch nur eine einzige Frequenz charakterisiert werden k{\"o}nnen. Wie in der Habilitationsarbeit gezeigt wurde, kann man jedoch den Begriff der Phase und damit auch der Synchronisierung auf chaotische Systeme ausweiten. Wegen ihrer sehr schwachen Wechselwirkung treten Beziehungen zwischen den Phasen und den gemittelten Frequenzen auf und f{\"u}hren damit zur {\"U}bereinstimmung der immer noch unregelm{\"a}ßigen Rhythmen. Dieser Effekt, sogenannter Phasensynchronisierung, konnte sp{\"a}ter in Laborexperimenten anderer wissenschaftlicher Gruppen best{\"a}tigt werden. Das Verst{\"a}ndnis der Synchronisierung unregelm{\"a}ßiger Oszillatoren erlaubte es uns, wichtige Probleme der Datenanalyse zu untersuchen. Ein Hauptbeispiel ist das Problem der Identifikation schwacher Wechselwirkungen zwischen Systemen, die nur eine passive Messung erlauben. Diese Situation trifft h{\"a}ufig in lebenden Systemen auf, wo Synchronisierungsph{\"a}nomene auf jedem Niveau erscheinen - auf der Ebene von Zellen bis hin zu makroskopischen physiologischen Systemen; in normalen Zust{\"a}nden und auch in Zust{\"a}nden ernster Pathologie. Mit unseren Methoden konnten wir eine Anpassung in den Rhythmen von Herz-Kreislauf und Atmungssystem in Menschen feststellen, wobei der Grad ihrer Interaktion mit der Reifung zunimmt. Weiterhin haben wir unsere Algorithmen benutzt, um die Gehirnaktivit{\"a}t von an Parkinson Erkrankten zu analysieren. Die Ergebnisse dieser Kollaboration mit Neurowissenschaftlern zeigen, dass sich verschiedene Gehirnbereiche genau vor Beginn des pathologischen Zitterns synchronisieren. Außerdem gelang es uns, die f{\"u}r das Zittern verantwortliche Gehirnregion zu lokalisieren.}, language = {en} } @phdthesis{Topaj2001, author = {Topaj, Dmitri}, title = {Synchronization transitions in complex systems}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0000367}, school = {Universit{\"a}t Potsdam}, year = {2001}, abstract = {Gegenstand dieser Arbeit ist die Untersuchung generischer Synchronisierungsph{\"a}nomene in interagierenden komplexen Systemen. Diese Ph{\"a}nomene werden u.a. in gekoppelten deterministischen chaotischen Systemen beobachtet. Bei sehr schwachen Interaktionen zwischen individuellen Systemen kann ein {\"U}bergang zum schwach koh{\"a}renten Verhalten der Systeme stattfinden. In gekoppelten zeitkontinuierlichen chaotischen Systemen manifestiert sich dieser {\"U}bergang durch den Effekt der Phasensynchronisierung, in gekoppelten chaotischen zeitdiskreten Systemen durch den Effekt eines nichtverschwindenden makroskopischen Feldes. Der {\"U}bergang zur Koh{\"a}renz in einer Kette lokal gekoppelter Oszillatoren, beschrieben durch Phasengleichungen, wird im Bezug auf die Symmetrien des Systems untersucht. Es wird gezeigt, daß die durch die Symmetrien verursachte Reversibilit{\"a}t des Systems nichttriviale topologische Eigenschaften der Trajektorien bedingt, so daß das als dissipativ konstruierte System in einem ganzen Parameterbereich quasi-Hamiltonische Z{\"u}ge aufweist, d.h. das Phasenvolumen ist im Schnitt erhalten, und die Lyapunov-Exponenten sind paarweise symmetrisch. Der {\"U}bergang zur Koh{\"a}renz in einem Ensemble global gekoppelter chaotischer Abbildungen wird durch den Verlust der Stabilit{\"a}t des entkoppelten Zustandes beschrieben. Die entwickelte Methode besteht darin, die Selbstkonsistenz des makroskopischen Feldes aufzuheben, und das Ensemble in Analogie mit einem Verst{\"a}rkerschaltkreis mit R{\"u}ckkopplung durch eine komplexe lineare {\"U}bertragungssfunktion zu charakterisieren. Diese Theorie wird anschließend f{\"u}r einige theoretisch interessanten F{\"a}lle verallgemeinert.}, language = {en} } @phdthesis{Ahlers2001, author = {Ahlers, Volker}, title = {Scaling and synchronization in deterministic and stochastic nonlinear dynamical systems}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0000320}, school = {Universit{\"a}t Potsdam}, year = {2001}, abstract = {Gegenstand dieser Arbeit ist die Untersuchung universeller Skalengesetze, die in gekoppelten chaotischen Systemen beobachtet werden. Ergebnisse werden erzielt durch das Ersetzen der chaotischen Fluktuationen in der St{\"o}rungsdynamik durch stochastische Prozesse. Zun{\"a}chst wird ein zeitkontinuierliches stochastisches Modell f{\"u}rschwach gekoppelte chaotische Systeme eingef{\"u}hrt, um die Skalierung der Lyapunov-Exponenten mit der Kopplungsst{\"a}rke (coupling sensitivity of chaos) zu untersuchen. Mit Hilfe der Fokker-Planck-Gleichung werden Skalengesetze hergeleitet, die von Ergebnissen numerischer Simulationen best{\"a}tigt werden. Anschließend wird der neuartige Effekt der vermiedenen Kreuzung von Lyapunov-Exponenten schwach gekoppelter ungeordneter chaotischer Systeme beschrieben, der qualitativ der Abstoßung zwischen Energieniveaus in Quantensystemen {\"a}hnelt. Unter Benutzung der f{\"u}r die coupling sensitivity of chaos gewonnenen Skalengesetze wird ein asymptotischer Ausdruck f{\"u}r die Verteilungsfunktion kleiner Abst{\"a}nde zwischen Lyapunov-Exponenten hergeleitet und mit Ergebnissen numerischer Simulationen verglichen. Schließlich wird gezeigt, dass der Synchronisations{\"u}bergang in starkgekoppelten r{\"a}umlich ausgedehnten chaotischen Systemen einem kontinuierlichen Phasen{\"u}bergang entspricht, mit der Kopplungsst{\"a}rke und dem Synchronisationsfehler als Kontroll- beziehungsweise Ordnungsparameter. Unter Benutzung von Ergebnissen numerischer Simulationen sowie theoretischen {\"U}berlegungen anhand einer partiellen Differentialgleichung mit multiplikativem Rauschen werden die Universalit{\"a}tsklassen der zwei beobachteten {\"U}bergangsarten bestimmt (Kardar-Parisi-Zhang-Gleichung mit S{\"a}ttigungsterm, gerichtete Perkolation).}, language = {en} }