@article{LeongRaffeinerSpintietal.2022, author = {Leong, Jia Xuan and Raffeiner, Margot and Spinti, Daniela and Langin, Gautier and Franz-Wachtel, Mirita and Guzman, Andrew R. and Kim, Jung-Gun and Pandey, Pooja and Minina, Alyona E. and Macek, Boris and Hafren, Anders and Bozkurt, Tolga O. and Mudgett, Mary Beth and B{\"o}rnke, Frederik and Hofius, Daniel and Uestuen, Suayib}, title = {A bacterial effector counteracts host autophagy by promoting degradation of an autophagy component}, series = {The EMBO journal}, volume = {41}, journal = {The EMBO journal}, number = {13}, publisher = {Wiley}, address = {Hoboken}, issn = {0261-4189}, doi = {10.15252/embj.2021110352}, pages = {17}, year = {2022}, abstract = {Beyond its role in cellular homeostasis, autophagy plays anti- and promicrobial roles in host-microbe interactions, both in animals and plants. One prominent role of antimicrobial autophagy is to degrade intracellular pathogens or microbial molecules, in a process termed xenophagy. Consequently, microbes evolved mechanisms to hijack or modulate autophagy to escape elimination. Although well-described in animals, the extent to which xenophagy contributes to plant-bacteria interactions remains unknown. Here, we provide evidence that Xanthomonas campestris pv. vesicatoria (Xcv) suppresses host autophagy by utilizing type-III effector XopL. XopL interacts with and degrades the autophagy component SH3P2 via its E3 ligase activity to promote infection. Intriguingly, XopL is targeted for degradation by defense-related selective autophagy mediated by NBR1/Joka2, revealing a complex antagonistic interplay between XopL and the host autophagy machinery. Our results implicate plant antimicrobial autophagy in the depletion of a bacterial virulence factor and unravel an unprecedented pathogen strategy to counteract defense-related autophagy in plant-bacteria interactions.}, language = {en} } @article{WiedmerJungCastroetal.2020, author = {Wiedmer, Petra and Jung, Tobias and Castro, Jose Pedro and Pomatto, Laura C. D. and Sun, Patrick Y. and Davies, Kelvin J. A. and Grune, Tilman}, title = {Sarcopenia}, series = {Ageing research reviews : ARR}, volume = {65}, journal = {Ageing research reviews : ARR}, publisher = {Elsevier}, address = {Clare}, issn = {1568-1637}, doi = {10.1016/j.arr.2020.101200}, pages = {17}, year = {2020}, abstract = {Sarcopenia represents a muscle-wasting syndrome characterized by progressive and generalized degenerative loss of skeletal muscle mass, quality, and strength occurring during normal aging. Sarcopenia patients are mainly suffering from the loss in muscle strength and are faced with mobility disorders reducing their quality of life and are, therefore, at higher risk for morbidity (falls, bone fracture, metabolic diseases) and mortality.
Several molecular mechanisms have been described as causes for sarcopenia that refer to very different levels of muscle physiology. These mechanisms cover e. g. function of hormones (e. g. IGF-1 and Insulin), muscle fiber composition and neuromuscular drive, myo-satellite cell potential to differentiate and proliferate, inflammatory pathways as well as intracellular mechanisms in the processes of proteostasis and mitochondrial function.
In this review, we describe sarcopenia as a muscle-wasting syndrome distinct from other atrophic diseases and summarize the current view on molecular causes of sarcopenia development as well as open questions provoking further research efforts for establishing efficient lifestyle and therapeutic interventions.}, language = {en} } @phdthesis{Korovila2022, author = {Korovila, Ioanna}, title = {Role of proteolytic systems in lipotoxicity-induced hepatocellular damage}, doi = {10.25932/publishup-55238}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-552385}, school = {Universit{\"a}t Potsdam}, pages = {117}, year = {2022}, abstract = {Scope: Several studies show that excessive lipid intake can cause hepatic steatosis. To investigate lipotoxicity on cellular level, palmitate (PA) is often used to highly increase lipid droplets (LDs). One way to remove LDs is autophagy, while it is controversially discussed if autophagy is also affected by PA. It is aimed to investigate whether PA-induced LD accumulation can impair autophagy and punicalagin, a natural autophagy inducer from pomegranate, can improve it. Methods and results: To verify the role of autophagy in LD degradation, HepG2 cells are treated with PA and analyzed for LD and perilipin 2 content in presence of autophagy inducer Torin 1 and inhibitor 3-Methyladenine. PA alone seems to initially induce autophagy-related proteins but impairs autophagic-flux in a time-dependent manner, considering 6 and 24 h PA. To examine whether punicalagin can prevent autophagy impairment, cells are cotreated for 24 h with PA and punicalagin. Results show that punicalagin preserves expression of autophagy-related proteins and autophagic flux, while simultaneously decreasing LDs and perilipin 2. Conclusion: Data provide new insights into the role of PA-induced excessive LD content on autophagy and suggest autophagy-inducing properties of punicalagin, indicating that punicalagin can be a health-beneficial compound for future research on lipotoxicity in liver.}, language = {en} } @phdthesis{Laeger2021, author = {Laeger, Thomas}, title = {Protein-dependent regulation of feeding, metabolism, and development of type 2 diabetes}, school = {Universit{\"a}t Potsdam}, pages = {224}, year = {2021}, abstract = {Food intake is driven by the need for energy but also by the demand for essential nutrients such as protein. Whereas it was well known how diets high in protein mediate satiety, it remained unclear how diets low in protein induce appetite. Therefore, this thesis aims to contribute to the research area of the detection of restricted dietary protein and adaptive responses. This thesis provides clear evidence that the liver-derived hormone fibroblast growth factor 21 (FGF21) is an endocrine signal of a dietary protein restriction, with the cellular amino acid sensor general control nonderepressible 2 (GCN2) kinase acting as an upstream regulator of FGF21 during protein restriction. In the brain, FGF21 is mediating the protein-restricted metabolic responses, e.g. increased energy expenditure, food intake, insulin sensitivity, and improved glucose homeostasis. Furthermore, endogenous FGF21 induced by dietary protein or methionine restriction is preventing the onset of type 2 diabetes in the New Zealand Obese mouse. Overall, FGF21 plays an important role in the detection of protein restriction and macronutrient imbalance in rodents and humans, and mediates both the behavioral and metabolic responses to dietary protein restriction. This makes FGF21 a critical physiological signal of dietary protein restriction, highlighting the important but often overlooked impact of dietary protein on metabolism and eating behavior, independent of dietary energy content.}, language = {en} }