@article{TraxlBoersRheinwaltetal.2016, author = {Traxl, Dominik and Boers, Niklas and Rheinwalt, Aljoscha and Goswami, Bedartha and Kurths, J{\"u}rgen}, title = {The size distribution of spatiotemporal extreme rainfall clusters around the globe}, series = {Geophysical research letters}, volume = {43}, journal = {Geophysical research letters}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0094-8276}, doi = {10.1002/2016GL070692}, pages = {9939 -- 9947}, year = {2016}, abstract = {The scaling behavior of rainfall has been extensively studied both in terms of event magnitudes and in terms of spatial extents of the events. Different heavy-tailed distributions have been proposed as candidates for both instances, but statistically rigorous treatments are rare. Here we combine the domains of event magnitudes and event area sizes by a spatiotemporal integration of 3-hourly rain rates corresponding to extreme events derived from the quasi-global high-resolution rainfall product Tropical Rainfall Measuring Mission 3B42. A maximum likelihood evaluation reveals that the distribution of spatiotemporally integrated extreme rainfall cluster sizes over the oceans is best described by a truncated power law, calling into question previous statements about scale-free distributions. The observed subpower law behavior of the distribution's tail is evaluated with a simple generative model, which indicates that the exponential truncation of an otherwise scale-free spatiotemporal cluster size distribution over the oceans could be explained by the existence of land masses on the globe.}, language = {en} }