@phdthesis{Emberson2016, author = {Emberson, Robert}, title = {Chemical weathering driven by bedrock landslides}, school = {Universit{\"a}t Potsdam}, pages = {221}, year = {2016}, language = {en} } @article{EmbersonHoviusGalyetal.2016, author = {Emberson, Robert and Hovius, Niels and Galy, Albert and Marc, Odin}, title = {Oxidation of sulfides and rapid weathering in recent landslides}, series = {Earth surface dynamics}, volume = {4}, journal = {Earth surface dynamics}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {2196-6311}, doi = {10.5194/esurf-4-727-2016}, pages = {727 -- 742}, year = {2016}, abstract = {Bedrock landslides, by excavating deep below saprolite-rock interfaces, create conditions for weathering in which all mineral phases in a lithology are initially unweathered within landslide deposits. As a result, the most labile phases dominate the weathering immediately after mobilisation and during a transient period of depletion. This mode of dissolution can strongly alter the overall output of solutes from catchments and their contribution to global chemical cycles if landslide-derived material is retained in catchments for extended periods after mass wasting.}, language = {en} } @article{EmbersonHoviusGalyetal.2016, author = {Emberson, Robert and Hovius, Niels and Galy, Albert and Marc, Odin}, title = {Chemical weathering in active mountain belts controlled by stochastic bedrock landsliding}, series = {Nature geoscience}, volume = {9}, journal = {Nature geoscience}, publisher = {Nature Publ. Group}, address = {New York}, issn = {1752-0894}, doi = {10.1038/NGEO2600}, pages = {42 -- +}, year = {2016}, abstract = {A link between chemical weathering and physical erosion exists at the catchment scale over a wide range of erosion rates(1,2). However, in mountain environments, where erosion rates are highest, weathering may be kinetically limited(3-5) and therefore decoupled from erosion. In active mountain belts, erosion is driven by bedrock landsliding(6) at rates that depend strongly on the occurrence of extreme rainfall or seismicity(7). Although landslides affect only a small proportion of the landscape, bedrock landsliding can promote the collection and slow percolation of surface runoff in highly fragmented rock debris and create favourable conditions for weathering. Here we show from analysis of surface water chemistry in the Southern Alps of New Zealand that weathering in bedrock landslides controls the variability in solute load of these mountain rivers. We find that systematic patterns in surface water chemistry are strongly associated with landslide occurrence at scales from a single hillslope to an entire mountain belt, and that landslides boost weathering rates and river solute loads over decades. We conclude that landslides couple erosion and weathering in fast-eroding uplands and, thus, mountain weathering is a stochastic process that is sensitive to climatic and tectonic controls on mass wasting processes.}, language = {en} }